

1ST SEM. 2004/2005

PAGE 1 OF 7

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME:

DIPLOMA IN AGRICULTURE YEAR I

DIPLOMA IN AGRICULTURAL EDUCATION YEAR I

HOME ECONOMICS YEAR I

HOME ECONOMICS EDUCATION YEAR I

COURSE CODE:

CP 101

TITLE OF PAPER:

CHEMISTRY

SECTION 1: INORGANIC CHEMISTRY

SECTION 2: ORGANIC CHEMISTRY

TIME ALLOWED:

TWO AND A HALF [2.5] HOURS

INSTRUCTIONS:

ANSWER FOUR [4] QUESTIONS, AT LEAST TWO QUESTIONS [2] FROM EACH SECTION

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

ı

SECTION: 1 INORGANIC CHEMISTRY

QUESTION 1

- (a) Define or give brief descriptions of the following terms and phrases. Each answer carries two [2] marks.
- (i) Freezing point
- (ii) An electron
- (iii) A neutron
- (iv) Solid
- (v) An ionic compound
- (vi) Inorganic chemistry
- (vii) liquid
- (viii) Endothermic reaction
- (ix) A strong base
- (x) An orbital

[20]

(b) Calculate the percent elemental composition of dolomite [CaMg(CO₃)₂] given the atomic masses of the following elements:

Ca = 40.0800	amu
O = 15.9994	amu
Mg = 24.305	amu
C = 12.305	amu

Your final answers should be expressed to two [2] decimal places. [5]

25]

QUESTION 2

(a) Determine the mass of two atoms of ²³⁸₉₂U (Uranium) in grams given that the mass of the isotope is 238.050784 amu and that Avogadros' number is equal to 6.022045 X 10²³ atoms per mole.

Show all calculations and express your final answer to four [4] decimal places.

[10]

(b) Calculate the atomic mass of magnesium given the abundances and masses of its naturally occurring isotopes. Show all calculations and do not round off your final answer.

<u>Isotope</u>	Abundance (%)		Mass (amu)
$^{24}_{12}$ Mg	77.89	\rightarrow	23.985042
²⁵ Mg	10.11	\rightarrow	24.985837
$^{26}_{12}$ Mg	12.00	\rightarrow	25.982593
			[10]

(c) Calculate the formula mass of orthoclase feldspar [KAlSi₃O₈] by using the following information:

$$K = 39.0983 \text{ amu}$$
 (atomic mass)
 $Al = 26.9815 \text{ amu}$ (atomic mass)
 $Si_3 = 84.3566 \text{ g}$ (molecular mass)
 $O_2 = 31.9988 \text{ g}$ (molecular mass) [5]

QUESTION 3

(a) How many atoms of hematite [Fe₂O₃] are there if it has a mass of 12.01 grams, given the molecular masses of:

$$Fe_2 = 111.694$$
 g $O_3 = 47.9983$ g and Avogadro's number = 6.022045 X 10^{23} atoms per mole

[10]

(b) Briefly explain how you would practically make a 1 N H₂SO₄ from a 8 M H₂SO₄ stock solution (using water as a solvent) in the laboratory. Clearly show your calculations. Atomic masses: H = 1.00794 amu. S = 32.06 amu. O = 15.9994 amu. [15]

SECTION 2 : ORGANIC CHEMISTRY

OUESTION 4

(a)	Define or briefly describe the following terms and phrases. Use a structural formula
	where necessary. Each answer carries two [2] marks.

- (i) Unsaturated hydrocarbon
- Hydrocarbon (ii)
- An organohalogen (iii)
- Essential amino acids (iv)
- (v) An electrophile
- Para directing group (vi)
- (vii) Protein
- (viii) A ketone
- (ix) An amine
- A tertiary amine (x)

[20]

(b) Write the molecular formula of an alkane containing nine [11] carbon atoms

[2]

(c) Determine the molecular formula of an alkene that contains twenty four [24] hydrogen atoms

[2]

(d) What is the molecular formula of an alkyne that has Six [6] carbon atoms.

[1]

[25]

QUESTION 5

- (a) Write the IUPAC names of the following compounds. Each answer carries two [2] marks.
- (i) CH₃-CH₂CH₂CH₂CH₃

 $\begin{array}{c} \text{CH}_2\text{-CH}_3\\ \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\\ \text{CH}_2\text{-CH}_2\text{-CH}_3\end{array}$ (ii)

[25]

(iii)
$$CH_3$$
- CH_2 - CH - CH - CH_3

(iv)
$$CH_3 - CH = C - CH - CH - CH_3$$

 $CH_3 OH$

(vii)
$$CH_3 - CH = CH - CH - CH_3$$

[20]

- (b) Write <u>condensed</u> IUPAC structural formulae for the following compounds. Each answer carries one [1] mark.
- (i) 2 chloro 1 heptanol
- (ii) 2 iodo 4 heptinal
- (iii) Ethoxycyclohexene
- (iv) 2 pentyne
- (v) Hexanone

(a) Copy ,complete and balance the following equations. Each answer carries one [1] mark.

(i)
$$CH_3 - CH_3 + F_2 =$$

$$(ii) \quad CH_2F_2 \qquad + \qquad F_2 \qquad = \qquad$$

PAGE 6 OF 7

(v)
$$CH_3CH=CH_2 + HC1 =$$

(vi)
$$CH_2=CH_2 + Br_2 =$$

(vii)
$$CH_2=CH_2 + 3O_2 =$$

(viii)
$$CH_3CH_2CH_2CH=CH_2 + HBr =$$

(ix)
$$CH_3CH_2CH_2OH + HI$$
 =

(x)
$$CH_3 - C - CH_3 + HCN = O$$

$$(xi)$$
 $CH_4 + 2O_2 =$

(xii)
$$R - \stackrel{R}{C} - OH + [O] =$$

(xiii)
$$CH_3 - CH_2 OH + 3O_2 =$$

(xiv)
$$CH_4 + Cl_2 =$$

PAGE 7 OF 7

- (b) Write correct condensed structural formulae of the incorrectly written condensed ones for the following compounds. Each answer carries two[2] marks.
- (i) Propane \neq CH₃-CH₄-CH₄
- (ii) Propanal \neq CH₃-CH₂-CH₂
- (iii) Pentanol \neq CH₃-CH₋CH-CH-CH₂
 OH
- (iv) Methoxypentene \neq CH₃-O-CH₂-CH=CH-CH-CH₂
- (v) Hexanone \neq CH₃CH-CH₃-CH-C-CH₃

[10]

[25]