

1ST SEM. 2004/2005

PAGE 1 OF 3

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMME:

BACHELOR OF SCIENCE IN AGRICULTURE

YEAR 5 (CROP PRODUCTION,

HORTICULTURE AND LAND AND WATER MANAGEMENT OPTIONS) AND BACHELOR OF SCIENCE IN AGRICULTURAL EDUCATION

YEAR 5

COURSE CODE:

CP 502

TITLE OF PAPER:

SOIL CHEMISTRY AND FERTILITY

TIME ALLOWED:

TWO AND A HALF (2.5) HOURS

INSTRUCTIONS:

ANSWER FOUR QUESTIONS, TWO (2)

QUESTIONS FROM EACH SECTION

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

400

1ST SEM. 2004/2005

PAGE 2 OF 3

SECTION 1: SOIL CHEMISTRY

QUESTION 1

Describe the dominant clay minerals in soils of your country and discuss the significance of clay minerals when soils are used for crop production or as a medium for the disposal of municipal waste. [25]

QUESTION 2

Discuss the interactions of sesquioxides with anions in tropical and subtropical soils and highlight the implications of these reactions in the mineral nutrition of plants [25]

QUESTION 3

- (a) Discuss the role of soil acidity in crop production [15]
- (b) What remedial actions would you recommend to improve crop yields in acid soils [4]
- (c) An acid soil was found to contain 5 me exch. Al/100g soil. Calculate the amount of limestone in metric tons/ha required to neutralize the exchangeable Al to a depth of 15cm. The soil has a bulk density of 1.2 g/cm³ and the limestone has a neutralizing value of 90%. [6]

1ST SEM. 2004/2005

PAGE 3 OF 3

SECTION 2: SOIL FERTILITY

QUESTION 4

- (a) Discuss, briefly, the major soil fertility problems in soils of your country and suggest practical strategies to address such problems [15]
- (b) A fertilizer recommendation for maize in the middleveld of Swaziland showed that for optimum growth of this crop the following elements must be applied as follows:
 - N 60kg ha⁻¹
 - P 55kg ha⁻¹
 - K 40kg ha⁻¹
 - (i) Calculate the amount of the compound fertilizer, 2:3:2(38), that must be added to supply all the N required. [6]
 - (ii) How much P and K would the quantity of 2:3:2(38), obtained in (i) above, supply to the maize plants? [4]

[25]

QUESTION 5

(a) Describe the transformations of phosphorus in soils and highlight the implications of such reactions in the phosphorus nutrition of plants.

[6]

- (b) Discuss the factors which influence the availability of phosphorus to plants in soils and indicate the strategies you would recommend to increase phosphorus availability to plants in soils. [15]
- (c) A soil has a phosphorus soil test of 10mg P kg⁻¹ soil and the sufficiency level for most crop plants in 20mg kg⁻¹ soil. The efficiency of conversion of fertilizer P to soil P is 20%. Calculate the amount of triple superphosphate (22%P) that is required to increase the soil test P to the sufficiency level. [4]

[25]

QUESTION 6

Suppose that you are a leader of a team that has been assigned the task of selecting an extractant for plant – available phosphorus in soils of a developing country. Describe in detail how you would accomplish this task.

[25]