

1ST SEMESTER 2009/2010

PAGE 1 OF 6

THE UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER

PROGRAMMES:

B.Sc. IN AGRONOMY YEAR 1

B.Sc. IN HORTICULTURE YEAR 1

B.Sc. IN AGRICULTURAL ECONOMICS AND AGRIBUSINESS MANAGEMENT YEAR 1

B.Sc. IN AGRICULTURAL AND BIOSYSTEMS ENGINEERING

YEAR 1

B.Sc. IN ANIMAL SCIENCE YEAR 1

B.Sc. IN CONSUMER SCIENCES EDUCATION YEAR 1

B.Sc. IN FOOD SCIENCE, NUTRITION AND TECHNOLOGY

YEAR 1

B.Sc. IN CONSUMER SCIENCES YEAR 1

B.Sc. IN TEXTILE AND APPAREL DESIGN AND MANAGEMENT

YEAR 1

B.Sc. IN AGRICULTURAL EDUCATION AND EXTENSION

YEAR 1

COURSE CODE: CP 101

TITLE OF PAPER:

INTRODUCTORY CHEMISTRY

SECTION 1 : INORGANIC CHEMISTRY SECTION 2 : ORGANIC CHEMISTRY

TIME ALLOWED:

TWO [2] HOURS

INSTRUCTION:

ANSWER FOUR [4] QUESTIONS WITH AT LEAST

TWO [2] QUESTIONS FROM EACH SECTION

NOTE:

THAT THE PAPER CONTAINS SIX [6] PAGES INCLUDING

THE COVER PAGE

DO NOT OPEN THIS UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION 1: INORGANIC CHEMISTRY

QUESTION 1

(a) Define or give brief descriptions of the following terms and phrases.	Each and	answer	carries
two [2] marks.			

- (i) An acid
- (ii) An electron
- (iii) A shell
- (iv) An atom
- (v) An isotope
- (vi) A proton
- (vii) A compound
- (viii) A subshell
- (ix) A molecular formula
- (x) An endothermic reaction

[20]

Given the following information: Atomic masses: Mg = 24.305 amu; $O_2 = 15.9994$ amu; $H_{2=1.007 \text{ amu}}$, calculate the equivalent mass of magnesium hydroxide [Mg(OH)₂]. [5]

[25]

QUESTION 2

(a) Determine the atomic mass of magnesium given the abundances and masses of its naturally occurring isotopes listed below. Show all calculations and express the final answer to five [5] decimal places.

Isotope	*	Abundances (%)	Masses (amu)
24 Mg 12		78.99	23.985042
25 Mg 12		10.00	24.985837
26 Mg 12		11.01	25.982593 [15]

(b) Calculate the formula mass of the mineral mascagnite $[(NH_4)_2SO_4]$, given the atomic masses of the following elements. O = 15.9994 amu. N = 14.0067 amu. H = 1.007 amu. S = 32.06 amu. [10]

[25]

QUESTION 3

(a) Find the percent element composition of the mineral Celsian $[BaAl_2Si_2O_8]$ by using the following information. Ba = 137.53 amu. Al = 26.9815 O = 15,9994 amu. Si = 28.00855 amu.

[15]

(b) By using the Product Rule, determine the pH values at the following concentrations.

(i) 0.001 M [5]

(ii) $2.0 * 10^{-2} M$ [5]

[25]

SECTION 2: ORGANIC CHEMISTRY

QUESTION 4.

(a)		or give brief descriptions of the following terms or phrases. Include a structural a where possible. Each answer carries two [2] marks.
	(i)	An hydrocarbon
	(ii)	An alkene
	(iii)	An alkane
	(iv)	An alkyne
	(v)	A saturated hydrocarbon
	(vi)	An ether
	(vii)	An organohalogen
	(viii)	A phenol
	(ix)	A nucleophile
	(x)	An addition reaction.
	(b) calcula	Determine the following molecular formulae by using the correct formula when sting:
	(i)	An alkane that has seven [7] carbon atoms.
	(ii)	An alkane that has six [6] hydrogen atoms.

An alkene that has a total of twenty four hydrogen [24] atoms

An alkene that has six [6] carbon atoms.

(iii)

(iv)

(v) A cycloalkane that has a total of six [6] carbon atoms.

[5]

[20]

[25]

5

QUESTION 5

- (a) Give the IUPEC names to each of the following compounds. Each answer carries two [2] marks.
 - (i) $CH_3 CH_2$ $CH_3 - CH - CH_2 - CH_2 - CH_2 - CH_3$

(ii)
$$CH_2 - CH_3$$

 $CH_3 - CH_2 - CH_3$
 $CH_2 - CH_2 - CH_3$

$$\begin{array}{ccc} CH_3-CH_2 & CH_2-CH_3\\ (iii) & CH_3-CH-CH_2-CH-CH_2-CH_3 \end{array}$$

(iv)
$$CH_3 - CH_2 = C_1 - CH_2 - CH_2 - CH_3$$

 $CH_2 - CH_2 - CH_2 - CH_3$

(v)
$$CH_3 - C \equiv C - CH_2 - CH_2 - CH_3$$

(vi)
$$CH_3 - CH_2 - CH_2 - CH_3 - CH_3$$

(ix)
$$\mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_3}$$

(x)
$$CH_3 - CH_2 - O - CH_2 - CH_2 - CH_3$$

PAGE 6 OF 6

(a) The reaction between an unsymmetrical alkene and an unsymmetrical reagent like an hydrogen halide gives two products of different quantities. State a rule that specifies the route followed by the electrophile so that one product is favored. Include an equation to illustrate the rule.

[25]

QUESTION 6

- (a) Write **condensed** IUPAC structural formulae for the following named compounds. Each answer carries two [2] markes.
 - i) 2 bromo -2- heptanol
 - ii) 3 methyl 2 hexyne
 - iii) 3 iodo 4 heptanol
 - iv) 1,1 dichloropentane
 - v) Cyclohexane

[10]

- (b) Either copy and complete the following equations or just supply the required answers only. Each answer carries three [3] marks.
 - i) $CH_3 CH CH_2 CH_3 + Cl_2 = CH_3$
 - ii) $CH_4 + Cl_2$
 - iii) $CH_4 + O_2 =$
 - iv) $CH_2 = CH_2 + Br_2 =$
 - v) CH_3 $CH_3 C OH + [O] =$

[15]