

1ST SESTER 2009/2010

PAGE 1 OF 3

UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

PROGRAMME:

BACHELOR OF SCIENCE IN AGRONOMY YEAR 3

HORTICULTURE YEAR 3

COURSE CODE: CP 301

TITLE OF PAPER: CROP BREEDING

TIME ALLOWED: TWO (2) HOURS

INSTRUCTIONS: ANSWER ANY FOUR (4) QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

COURSE CODE: CP 301(S)

PAGE 2 OF 3

QUESTION 1

Explain fully, the following terms and their importance in crop breeding:

a)	Diallel analyses	[5 Marks]
b)	Gene action	[5 Marks]
c)	Deoecy	[5 Marks]
d)	Gametophytic apomixes	[5 Marks]
e)	Molecular marker assisted plant breeding	[5 Marks]

[25 Marks]

QUESTION 2

a) Define crop breeding and its overall objectives. [15]

b) What was the contribution of the following scientists to crop breeding:

i. Nikolai Ivanovich Vavilov [5]ii.W.L. Johannsen [5]

[25 Marks]

QUESTION 3

- a) Define mass selection and discuss its disadvantages in self pollinated crops. [10]
- b) Using any quantitative trait of your choice, describe in details the selection procedure in a backcross breeding program. Your discussion should indicate why four (4) back cross generations are enough to transfer the trait of interest.

[25 Marks]

QUESTION 4

Assuming you are an assistant tomato breeder interested in developing lines that have an **increased** shelf life. Given the data below from an F₂ population;

Parameter	Variances
δ^2 G	11.73
$\delta^2 D$	4.32
$\delta^2 E$	2.19
$\delta^2 I$	0.14
$\delta^2 GxE$	0.03
Population Mean (Days)	12.8

- a) Calculate the genetic advance at 2 % selection intensity (k-value =2.42). [15]
- b) What conclusions can you draw from using this population for breeding for increased shelf life in tomatoes? [10]

[25 Marks]

QUESTION 5

Describe how inbred lines are developed and utilized in both conventional and non conventional hybrid breeding programmes. [25 Marks]