

UNIVERSITY OF SWAZILAND FACULTY OF AGRICULTURE AND CONSUMER SCIENCE

SUPPLEMENTARY EXAMINATION

PROGRAMMES:

B.Sc. IN AGRONOMY: YEAR I

B.Sc. IN AGRICULTURAL AND BIOSYSTEMS ENGINEERING: YEAR 1

B.Sc. IN AGRICULTURAL ECONOMICS AND AGRIBUSINESS

MANAGEMENT: YEAR I

B.Sc. IN ANIMAL SCIENCE (DAIRY): YEAR I

B.Sc. IN AGRICULTURAL EDUCATION AND EXTENSION: YEAR I

B.Sc. IN ANIMAL SCIENCE: YEAR I
B.Sc. IN CONSUMER SCIENCES: YEAR I

B.Sc. IN CONSUMER SCIENCES IN EDUCATION: YEAR I

B.Sc. IN FOOD SCIENCE, NUTRITION AND TECHNOLOGY: YEAR I

B.Sc. HORTICULTURE: YEAR I

B.Sc. IN TEXTILE AND APPAREL DESIGN AND MANAGEMENT: YEAR I

COURSE CODE AND TITLE:

CPR 103: CHEMISTRY

TIME ALLOWED:

TWO [2] HOURS

INSTRUCTIONS:

1. ANSWER 4 QUESTIONS, 2 QUESTIONS FROM EACH

SECTION

2. DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN

GRANTED BY THE CHIEF INVIGILATOR

NOTE: THIS PAPER CONTAINS 6 PAGES INCLUDING THE COVER PAGE

Section 1: Inorganic Chemistry

Question 1

a. Define the following terms:

i. A colloid	
	[2.5 marks]
ii. A solid	[2.5 marks]
iii. Solvent	[2.5 marks]
iv. Endothermic reaction	[2.5 marks]
v. Electrolyte	
vi. A nucleus	[2.5 marks]
vi. A flucieus	[2.5 marks]

b. Calculate the formula mass of Potassium dichromate $(K_2Cr_2O_7)$ given the following information: K = 39.098 amu; Cr = 51.996 amu; O = 15.999 amu [5 marks]

c. Distinguish between covalent and ionic bonds.

[5 marks]

[25 marks]

Question 2

a. Calculate the atomic mass of Neon (Ne) in amu; given the following information of the isotopes:

Neon 20 [20 Ne] with abundance of 90.48 %; Neon 21 [21 Ne] with abundance of 0.27 %; and Neon 22[22 Ne] with abundance of 9.25 %.

[10 marks]

- b. Calculate the percent (%) elemental composition of Zinc pyrophosphate $(Zn_2P_2O_7)$ given the following information: Zn = 65.39 amu; P = 30.974 amu; O = 15.999 amu [10 marks]
- c. Convert: 0.49 N Sulphuric acid (H₂SO₄) to Molarity.

[5 marks]
[25 marks]

Question 3

- a. What pressure (in bars) could 3.44 mol of argon gas exert in a vessel of volume 1600 ml at 24°C if it behaved as an ideal or a perfect gas? [5 marks]
- b. You are required to make 200 ml of 0.77 M Sodium carbonate (Na₂CO₃); calculate the mass of the solute you would need to make this solution. [10 marks]
- c. Calculate the equilibrium constant of the reaction of CO and H_2O to produce CO_2 and H_2 given that the concentrations are as follows; [CO] = 0.0044 M, [H_2O] = 0.0044 M, [CO_2] = 0.0033 M and [H_2] = 0.0033 M at 1000°C.

[10 marks]

[25 marks]

Section 2: Organic Chemistry

Question 4

a. Define the following terms:

Duntata	
Protein	[2.5 marks]
Hydrocarbon	
	[2.5 marks]
	[2.5 marks]
Molecular formula	[2.5 marks]
An alkyne	
•	[2.5 marks]
naiogenation reaction	[2.5 marks]
	Protein Hydrocarbon Saturated hydrocarbon Molecular formula An alkyne Halogenation reaction

- b. What is the molecular formula of an alkane containing eight [8] carbon atoms?
 [5 marks]
- c. Determine the molecular formula of an alkene that contains sixteen (16) hydrogen atoms. [5 marks]

[25 marks]

Question 5

a. Give the IUPAC names of the following compounds:

[1 mark each]

$$\begin{array}{ccccc} CH_3\text{-}CH_2 & CH_3\\ i. & CH_3\text{-}CH\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH-CH_3\\ CH_3 & CH_3 \end{array}$$

- iv. CH₂=CH-CH=CH-CH=CH-CH₃
- v. CH₂=CH-CH=CH₂

ix. CH₃-CH₂CH₂-CH₂-C≡C-CH₃

x.
$$CH_3$$
- CH_2 - $C\equiv C$ - C - CH_2 C H_3

xiv. CH₃CH₂CH₂NH₂

b. Write down the structural formula for each of the following compounds:

i. Butane

[2 marks]

ii. Methylcyclohexane

[2 marks]

iii. 3-ethyl-2-methyloctane

[2 marks]

iv. Pentene

[2 marks]

v. 2-methyl-2-pentene

[2 marks]

[25 marks]

Question 6

a. Complete the following chemical equations:

[2 marks each]

i.
$$CH_2Cl_2 + Cl_2$$

ii.
$$CHCl_3 + Cl_2$$

$$\longrightarrow$$

iii.
$$CH_3CH_2CH_3 + 5O_2$$

$$\longrightarrow$$

iv.
$$CH_3CH_2CH_3 + 3.5O_2$$

v.
$$CH_2=CH_2+HC1$$

$$\longrightarrow$$

vi.
$$CH_3(CH_2)_3CH=CH_2+Br_2$$

$$\longrightarrow$$

$$H-C\equiv C-CH_2-CH_2-CH_3+2HBr$$

$$\frac{K_2Cr_2O_7}{H_2SO_4} \Rightarrow$$

$$K_2Cr_2O_7$$

 H_2SO_4

b. Describe how you would treat someone poisoned by carbon monoxide (CO)? [5 marks]

[25 marks]

Extra information given:

- 1. Equation of a perfect gas: pV = nRT
- 2. Gas constant (R) = $8.31447 \times 10^{-2} \text{ L bar K}^{-1} \text{ mol}^{-1}$
- 3. Avogadro's constant: $6.02214 \times 10^{23} \text{ mol}^{-1}$
- 4. Density of water: 1 g/cm³
- 5. $pH = log 1/[H^+] = -log [H^+]$
- 6. mA + nB pC + qD
- 7. $K = ([C]^p [D]^q)/([A]^m [B]^n)$
- 8. X = p/K
- 9. $F = k(C_1 \times C_2)/r^2$
- 10. $\Delta G = \Delta H T\Delta S$
- 11. C₁V₁=C₂V₂