UNIVERSITY OF SWAZILAND FACULTY OF HEALTH SCIENCES DEGREE IN ENVIRONMENTAL HEALTH SCIENCE FINAL EXAMINATION PAPER, 2006

TITLE OF PAPER:

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS

COURSE CODE:

EHS 537

DURATION:

3 HOURS

INSTRUCTIONS:

ANSWER ANY FIVE QUESTIONS. EACH

QUESTION CARRIES 20 MARKS.

NO PAPER SHOULD BE BROUGHT INTO OR OUT OF THE EXAMINATION ROOM.

START EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS

PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

Question I (20 marks)

- (a) State the factors that would guide you in selecting an appropriate method for the analysis of an environmental sample. (4).
- (b) Explain the term 'sampling' of an environmental sample for analysis. What steps should be taken to ensure that appropriate sampling has been carried out? (3).
- ©. Why is sample pretreatment usually a necessary step prior to the actual analysis of the sample? Give four of such pretreatment steps often employed for samples in environmental/analytical laboratories. (5)
- (d) Using a labeled diagram, identify the basic components of a typical instrument for chemical analysis. State the functions of any one of the components and give an example in a named instrument. (8)

Question 2 (20 marks)

- (a). explain the term 'deviation from Beer's law'. Using a graphical illustration distinguish between a positive and a negative deviation from Beer's law.
 (4)
- (b) Briefly discuss the causes and possible corrections of real (true) deviation from Beer's law. (4)
- (c). The combined absorbance, A_c , when a beam of radiation, made up of two wavelengths λ and λ^1 with molar absorptivities of ϵ and ϵ^1 respectively, pass through an absorbing solution is given by:

$$A_c = log\{P_o + P_o^1\} - log\{P_o10^{-\epsilon bc} + P_o^110^{-\epsilon'bc}\}$$

- (i). Assuming Beer's law applies, obtain this expression. (3)
- (ii). What type of deviation from Beer's law (if any), occurs when: $\epsilon = \epsilon^1$, $\epsilon > \epsilon^1$, and $\epsilon < \epsilon^1$ (3)
- (d). Stray radiations have been identified as one of the instrumental causes of deviation from Beer's law during spectroscopic analysis:
 - (i) What are their main features? (4)
 - (ii) Give the expression for the measured absorbance, A_m due to them, and define all the parameters involved in it. (2)

Question 3 (20 marks)

	(a)	spectroscopic analysis of a sample.	(3)
	(b).	Categorize the following spectroscopic methods as either 'absorpti 'emission' and state the quantity measured in each case.	on' or
		(i) FAES, (ii) FAAS, (iii) FAFS.	(3)
	(c).	Identify at least one difference in the setup or design of the following of instruments:	ng pairs
		(i) FAES and FAAS, (ii) FAFS and FAES,	
		(iii) FAAS and FAFS.	(3)
		attached on the next page is the unlabelled diagram of a double bear	n in time
	C	onfiguration spectrophotometer:	(5)
		(i) Label the diagram.	(5)
		(ii) Briefly discuss its working principles.	(3)
		(iii) Give its advantages over a single beam spectrophotomete	
		(iv) What is its advantage over a double beam in space config	
			(1)
Quest	ion 4 ((20 marks)	
	(a).	For the 'Flame Atomic Absorption Spectroscopic technique:	
		(i) State the basic components of the instrumental set up.	(3)
		(ii) Give a brief account of its working principles.	(4)
		(iii) Give two examples of environmental analysis for which i	t can be
		employed.	(2)
	(b).	The 'Hollow Cathode Lamp' is a vital part of a number of atomic spectroscopic instruments:	;
		(i) Give two examples of such instruments.	(1)
		•	• .
		(ii) Using a schematic diagram as an additional illustrative di	scuss its
		 (ii) Using a schematic diagram as an additional illustrative di configuration and working principles. 	(8)
		(ii) Using a schematic diagram as an additional illustrative di	(8)
		 (ii) Using a schematic diagram as an additional illustrative di configuration and working principles. 	(8)
		 (ii) Using a schematic diagram as an additional illustrative di configuration and working principles. (iii) What are the weaknesses of 'multi-element' types relative 	(8) to the

This page should be removed and attached to the answer script after labeling.

Question 5 (20 marks)

(a)	(i)	Explain the term 'source' with regard to Atomic Spectroscopic Methods.	(1)
	(ii) (iii)	Give two commonly employed 'sources' in atomic spectroscopy are instruments/methods in which they are used. State four of the idealized goals of any such sources.	nd the (2) (4)
(b)		s an interference with regard to chemical analysis? How is an interf lly countered or corrected?	erence (2)
©		case of 'Vapourization' (or 'Chemical') interference commonly assorames and furnaces during spectroscopic analysis: Discuss its cause/origin. Using illustrative examples, discuss the methods usually employed correction/reduction.	(1)
Questi	ion 6 (2	0 marks)	
(a) (b) ©	all the Disting during	he Nernst distribution law. Give mathemathecal expression for it and parameters involved in it. guish between distribution coefficient, K _D and distribution ratio, D, solvent extraction analysis. Illustrate this difference with an examp extraction f a weak acid, HB, whose anion (B'), does not penetrate to phase and is monomeric in both phases: State the expression for its distribution ratio and define all the parain it. Give two of the factors that influence the value of D.	(3) used le. (4) the
(d)	As	solute being extracted from water with carbon tetrachloride has a tribution ratio, D, of 85.0 What percentage is extracted from the aqueous phase when 50.0ml 1.0 x 10 ⁻³ M aqueous solution of the solute is extracted with 50.0ml carbon tetrachloride? Would you have preferred employing two successive extractions, e with 25.0mL carbon tetrachloride? Explain	L of L of (5)

Question 7 (20 marks)

(a) What is a chromatogram? Using an illustrative diagram, show how it is employed for both qualitative and quantitative analysis of a sample. (6)

(1	b) (i)	What is	'Temperature program	ming' of a chromatograph	hic column?
			-		(2)
	(ii)	Discus	the effects of 'Temper	ature programming' on th	e performance of
a		chroma	tographic column.		(4)
C	Wh	at is column	n efficiency with regard	s to gas chromatography?	(1)
(0			uces an elution peak aft (w _x), is 3.30s:	ter 148s. Given that the w	idth of the peak at
	(i)	_		oretical plates in the colu	mn. (4)
	(ii)		-	alculate the column efficie	• •
	` '	H.E.T.	— —		(3)
Ques	stion 8	3 (20 mark	s)		
G	a)	Define Rev	value with regards to ou	alitative analysis in plana	ar
(•)	chromatog	_	and the many one and promite	(2)
		· · · · · · · · · · · · · · · · · · ·			(-)
(1	o)	For the ana		and using the TLC method	l, give a brief
	(i)	•	tion of the TLC plate		(6)
	(ii)	_		components/spots on the	` '
	©	•	re and contrast 'Thin La atography' with respect the nature of the station the nature of the mobile	ary phases	th the 'Paper
		(iii)	resolution and sensitivi	•	(6)
				•	` '

PERIODIC TABLE OF ELEMENTS

. 81	VIIIX	1.001	He	2.	20.180	Š	01	39.948	۸r	81	83.80	굮	36	131.29	×	2 2	(222)	(222) I2 n	8					
17	VIIV				18.998	<u></u>	9 ,	35.453	_.	11	79.904	Br	35	126 90	-	23	010	(4,10)	85	6	ē			
16	2 ×			-	15.999	0	∞	32.06	လ	91	78.96	Š	34	127 60	2 -	2, 6	(000)	0,02	2 7					
15	\				14.007	Z	7	30.974	۵	15	74.922	As	33	12175	617	3 -	20.000	200.90	3 6	3				
41	\ <u>\</u>				12.011	ပ	9	28.086	Si	4	72.61	ဗိ	32	118 71	7.0	5 5	25	7./07	<u> </u>	70				
. 2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			118.01	C.	~~~	26.982	I	13	69.723	ئ		5	79.67	u e	2	204.38	= ;	8				
1.2	7	 			Atomic mass —		i ż				65.39	Z.n	5 2		112.41	ع د	40	200.59	118	2				
=		 ≘.			Atomic	Symbol	Atomic No.				63.546	ٿ	3 8	, ;	/8./01	۸. ت	/4	196.97	ηV	79				
2	2	- -									58.69	ž	280	07	106.42	ار ا	46	195.08		78	(267)	Uun :	2	
GROUPS									2	CIVIS	58.933	5	3 5	7	102.91	Zh :	6	192.22	<u>.</u>	77	(266)	Une	601	
1	×	i								ELEMI	55 847		ט נ	07	101.01	Ru	44	190.2	os O	76	(265)	Uno .	801	
ı							•		(TRANSITION ELEMENTS	54 018	2000	IVI IVI	3	98.907	T _c	5	186.21	Re	75	(292)	Uns	107	
	+	=								FRANS	700 13		: כ	+		Mo	7	183.85	≩	74	(263)	Unh	901	
	5	— ≅.								•	-	-	> ;	52	92.906	Ŝ	=	180.95	La	73	(292)	Нa	105	
	4	IVI3									77.00	00.74	= :	22	91.224	Zr	40	178.49	H	72	(261)	Rf	104	
	3	<u> </u>									73077	064.90	Sc					138.91	*La	57	(227)	**Ac	89	
	2	٧I				9.012	Be V	7	24.305	Mg	 -	<u> </u>	ర్	- 1	87.62	Sr	38		33	26	226.03	Ra	88	-
	_	<	1.008	=	-	6.941	تار			~ ~		_	×	61	85.468	Rb	37	132.91	ڻ		223	Γr	87	
. (PERIODS		-			2			۳,			4			v				5		7		

											1000	1000	1000	174.07
	140.12	40.12 140.91 144.24	144.24	(145)	.150.36	151.96	157.25	158.93	162.50	164.93	167.20	26.97	175.04	1,4.9,
	<u>ئ</u>	Pr	Nd	Pm	Sm	. Eu	DG CS	Tb	Οy	Ho	i :	E (χp	<u>.</u>
*Lanthanide Series	28 6	. 29	09	19	62	63	64	65	99	67	89	66	2	=
										1000	(157)	1050	10501	(0)(1)
	22.04	23 04 231 04 238 03	238.03	237.05	(244)	(243)	(247)	(247)	(152)	(757)	(7)	(679)	(407)	(400)
** Actinide Series	474.01	2		,	,	`		17.	۲	1	Fm	Md	ŝ	<u>.</u>
	ij	Pa	>	Z	r.a	Am	3	Y C	5 5	3 8		-	2	701
	06	16	92	93	94	95	%	97	86	5	3	2	701	CAL
	?						1].						
		() indi) indicates the	he mass n	number of the isotope with the tongest half-tife.	The isol	оре жі(h	the long	est nail-	lije.				
					•									

Quantity	Symbol	Value .	General data and
Speed of light†	c	$2.99792458 \times 10^8 \mathrm{m s^{-1}}$	fundamental
Elementary charge		1.602.177 X 10-19 C	constants-
Faraday constant	$F = eN_{A}$	9.6485 × 10⁴ C mol ⁻¹	
Boltzmann constant	k	$1.380 66 \times 10^{-23} \text{ J K}^{-1}$	
Gas constant	$R = kN_A$	8.314 51 J K ⁻¹ mol ⁻¹	. •
	•	8.205 78 × 10 ⁻² dm³ atm K ⁻¹ m	ol-1
٠.		62.364 L Torr K ⁻¹ mol ⁻¹	•
Planck constant	h	6.626 08 × 10 ⁻³⁴ J s	
	$\dot{n} = h/2\pi$	$1.054^{\circ}57 \times 10^{-34} \text{ J s}$	
Avogadro . constant	N _k	6.022 14 × 10 ²³ mol ⁻¹	
Atomic mass unit	u ·	$1.66054 \times 10^{-27} \mathrm{kg}$	• •
Mass of electron	m.	9.109 39 × 10 ⁻³¹ kg	
proton		$-1.672-62 \times 10^{-27} \text{ kg}$	
neutron	m · · - · - · - · - ·	1.674 93 × 10 ⁻²⁷ kg	
Vacuum	μο	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
permeability†		4	And the speed of the second
Vacuum	$\varepsilon_0 = 1/c^2 \mu_0$	$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$.8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	
permittivity	4πε ₀ -	$1.11265 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^-$	
Bohr magneton	μ _s = efi/2m.	$9.27402 \times 10^{-24} \text{ J T}^{-1}$	
Nuclear magneton	$\mu_N = e \hbar / 2 m_p$	5.050 79 × 10 ⁻²⁷ J T ⁻¹	
Electron g value	g.	2.002 32.	
. Bonr radius	$a_0 = 4\pi \epsilon_0 h^2/m_e \epsilon$	5.291 77 × 10 ⁻¹¹ m	
Rydberg	$R_{-} = m_{+}e^{4}/8h^{3}c$		
· constant Fine structure	$\alpha = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻³	· .
constant Gravitational	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻	
constant		_	
Standard acceleration	. g	_ 9.806.65 m.s ^{-?}	
of free fall†			† Exact (defined) values
f p	n μ m	e dk M	G Prefixes
femto pico	nano micro milli	centi deci kilo mega	giga
10-15 10-12	10-9 10-6 10-3	10 ⁻² 10 ⁻¹ 10 ³ 10 ⁶	109