UNIVERSITY OF SWAZILAND FACULTY OF HEALTH SCIENCES SUPPLEMENTARY EXAMINATION, 2006

TITLE OF PAPR

Instrumental Methods for

Environmental Analysis

COURSE CODE

:

EHS 537

TIME

:

Three Hours

INSTRUCTIONS

Answer any FIVE(5)

questions. Each question carries 20

marks.

A periodic table and other useful data have been provided with this paper.

You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator

Question 1 (20 marks).

- a) State the steps (in sequential form), that should be followed in solving a typical analytical problem. (6)
- b) (i) Using a labeled schematic diagram, identify the basic components of a typical analytical instrument (5)
 - (ii) Discuss briefly the functions of any two of these components and give an example in a named instrument (5)
- b) State the salient performance characteristics (selection criteria) for an analytical instrument. (5)

Question 2 (20 marks)

- a) Give one type of radiation source for each of the following wavelength regions of the electromagnetic spectrum.
 - (i) Visible (ii) UV and (iii) IR. (3)
- b) State the necessary precautions in the handling and maintenance of a sample cuvet for UV spectrophometric analysis.
- c) The amount of iron in an aqueous sample was determined spectrophotometrically by preparing the 1.10-phenathroline complex with a λ_{max} of 508 nm. The Fe(II) stock solution was prepared by transferring 0.702g of Fe(NH₄)₂. (SO₄)₂. 6H₂0 into 1-L volumetric flask originally containing 2.5 mL H₂SO₄, and then diluted to mark with distilled water. The working standards were prepared by transferring 1.00-, 2.00-, 5.00- and 10.00- mL portions of the stock solution to separate 100.00 mL volumetric flasks. 10.00 mL of the sample was put in another 100 mL flask, and equal amounts of hydroxyl ammonium chloride followed by phenanthroline solution were added to each flask and then diluted to mark with water. A blank was prepared in a similar way in another 100 mL volumetric flask. The following table shows the absorbance readings obtained for both standards and sample when measured in a 1cm cuvette against the blank at 508 nm.

Solution	Standard 1	Standard 2	Standard 3	Standard 4	Sample
Absorbance	0.041	0.081	0.205	0.420	0.232

(10)

(i) Calculate the amount of iron in the sample in ppm.

	(ii)	What would be the absorbance of the sample if a 4 cm cuvette was used (3)	1?
<u>Qı</u>	ıesti	ion 3 (20 marks)	
	a)	For a spectrophotometer, list the components of its monochromator system give the respective functions of each named component.	, and (6)
	c)	For the prism as a component of the monochromator system:	
		(i). State the spectral region where it works best and why.(ii). State the factors that increase its resolution.	(4)
		 (i) State the factors that increase the resolution of 'diffraction grating a component of the monochromator system of a spectrophotome (ii) Give example of a spectrophotometer which uses the diffraction monochromator. 	ter. grating
	((iii) What advantage/s does it have over the prism monochromator syste	m? (5)
d)		What monochromator prism material would you recommend for the follow spectral regions: (i) Visible. (ii) UV (iii) IR? Account briefly for your choice.	ring (5)
Qı	ıesti	<u>ion 4</u> (20 marks)	
	a)	What is meant by "interference" with regards to flames and furnances?	(1)
	b)	For the 'chemical', 'ionization' and 'spectral' types of interferences. (i) Explain their causes (ii) Discuss the steps normally taken to correct or eliminate each of (iii). Discuss the steps usually taken to correct or eliminate 'ionizatio interference.	
	c)	 (i) Give two examples each of a 'cool flame' and a hot flame' (ii) Offer an explanation for the following observation. "Although chen interferences are more prevalent in 'cool' flames, yet this flame is preferred for the analysis of alkali metals" 	nical (7)

What would be the absorbance of the sample if a 4 cm cuvette was used?

Question 5 (20 marks)

- a) Detail the basic principles of solvent extraction of metals as metal chelates and give an example of a chelating agent. (5)
- b) State the expression for the distribution ratio, D, of a metal between an aqueous and an organic phase during solvent extraction using a chelating agent. What conclusions can be drawn from this expression? (5)
- c) A 1.0×10^{-7} M aqueous Cu (II) was being extracted into CCl₄ by 0.1mM dithizone. Given that $K_{DL} = 1.1 \times 10^4$; $K_{DM} = 7.0 \times 10^4$; $K_a = 3.0 \times 10^{-5}$; $K_f = 5.0 \times 10^{-2}$ and n = 2. Calculate:
 - (i) The distribution ratio for this extraction at pH = 1.0 (5)
 - (ii) The fraction of Cu(11) remaining in the aqueous phase when 100ml of the 1.0×10^{-7} M aqueous Cu(11) is extracted once with 50ml of the CCl₄ at pH = 1.0. (5)

Question 6 (20 marks)

- a) In gas chromatography (GC) what is column efficiency? How is its value affected by N, the number of theoretical plates, and H, the plate height? What other factors affect it? (5)
- b) What is temperature programming in GC? Use a graphical illustration to show how it affects the resolution, R_s, the retention time, t_r and the number of solutes eluted during a GC analysis. (5)
- c) What are the functions and the ideal properties of the liquid stationary phase for GC analysis? (5)
- d) Give four general applications of 'Gas Chromatographic analysis'. Give an example of an industry in Swaziland where this method is being used on routine basis.

PERIODIC TABLE OF ELEMENTS

U.	
2	
=	•
C)
~	
7	
C	,

		<	_			<u>@</u>			<u>&</u>	_		0	<u>.</u>		62		į						
	2	III/	4.00.1	He	7	20.180	ž	01	39.948	٧	- 18	83.80	7	36	131.29	× —	24	(222)	₹	86			
	17	٨١١٨				18.998	<u></u>	6	35.453	Ü	17	79.904	Br	35	126.90	-	53	(210)	۸t	85			
	91	۷۱۸				15.999	0	8	32.06	S	91	78.96	Sc	34	127.60	Te	52	(209)	Po	84			
	15	۷۷		•		14.007	z	7	30.974	٦	15	74.922	As	33	121.75	Sb	51	208.98	Bi	83			
ĺ	14	١٧٨				12.011	S	9	28.086	Si	14	72.61	Ge	- 1	_		Į.	207.2	Pb	82			
	13	VIII			i	118.01	B ♠	ς •	26.982	ΑI	13	69.723	Сa	31	114.82	In	49	204.38	Ţ	81			
-	12	IIB				Atomic mass -1 10.81	Symbol -	ic No.		,	-71	65.39	Zu	30	112.41	Cq	8 9	200.59	IIg	80			
	11	113				Atomi	Syn	Atomic No.				63.546	Cu	29	107.87	АВ	47	196.97	γn	79			
	10											58.69	ž	28	106.42	Ьd	46	195.08	Pt	78	(267)	Unn	011
GROUPS	6	VIIIB								ENTS		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	77	(390)	Une	109
5	∞		:							RIFM		55.847	Fe	56	101.07	Ru	44	190.2	Os	92	(265)	Uno	801
	7	VIIB								TRANSITION ELEMENTS	t t	54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(262)	Uns	107
	9	VII3								TRAN	; ; ;	51.996	Ç	24	i	Μo			≯	74	(263)	Unh	901
	5	NI3										50.942	>	23	92.906	ίχ	41	180.95	Ta	73	(292)	На	105
	4	IVI	•									47.88	Ţ	22	91.224	Zr	40	178.49	JH	72	(192)	Rf	104
	3	E	_									44.956	Sc	21	88.906	>	39	138.91	*La	57	(227)	**Ac	89
	2	<u> </u>				9.012	Be	4	24.305	Μ	. 22	40.078	ర	20	87.62	Sr	38	137.33	Ва	99	226.03	Ra	88
	_	≤	1.00%	=	: –	6.941	Ľ.	3	22.990	Z	=	39.098	¥	61	85.468	KI}	37	132.91	స	55	223	Fr	87
		PERIODS		,-	-		,	4		,,	,		Ą	•		v	;		٠	,		7	

rics
Ser
ide
ani
nth
*La
*

** Actinide Series

103	102		100	66	86	26	96	95		93	92	16	06
Ļ	Š		Fm	Es	ŭ	Bķ	Cm	Αm		ďN	>	Pa	Th
(260)	(259)		(257)	(252)	(251)	(247)	(247)	(243)	(244)	237.05	238.03	231.04	232.04
71	70	69	89	29	99	92	64	63	62	19	09	29	28
Lu Lu	ХP		Er.	Ho	Dy	Tb	рS	Eu	Sm	Pm	PN	. Pr	రి
174.9	173.04		167.26	164.93	162.50	158.93	157.25	151.96	150.36	(145)	144.24	140.91	140.12

() indicates the mass number of the isotope with the longest half-life.

	Quantity	Symbol	Value	General data and
	Speed of light†	<i>c</i>	$2.99792458 \times 10^8 \mathrm{m s^{-1}}$	fundamental
	- Elementary charge	-		constants-
	Faraday constant	$F = eN_{A}$	9.6485 × 10 ⁴ C mol ⁻¹	
	Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹	
	Gas constant	$R = kN_{A}$	8.31451 J K ⁻¹ mol ⁻¹	•
			8.20578×10^{-2} dm ³ atm K ⁻¹ mol ⁻	-1
			62.364 L Torr K ⁻¹ mol ⁻¹	•
	Planck constant	h	6.626 08 × 10 ⁻⁵⁴ J s	
	•	$\hat{h} = h/2\pi$	1.054 57 × 10 ^{−34} √s	A grant of the
	Avogadro constant	N _A	6.022 14 × 10 ²³ mol ⁻¹	
	Atomic mass unit	u .	$1.66054 \times 10^{-27}\mathrm{kg}$	
	Mass of			• •
	electron	m_{ullet}	9.109 39 × 10 ⁻³¹ kg	•
-	proton	m ₂	$1.672-62 \times 10^{-27} \text{ kg}$	
	neutron	m _n	1.674 93 × 10 ⁻²⁷ kg	
	Vacuum	μ_{2}	$4\pi \times 10^{-7} \mathrm{J s^2 C^{-2} m^{-1}}$	
			$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$	· ·
	Vacuum	$\varepsilon_0 = 1/c^2 \mu_0$	$8.854 19 \times 10^{-12} J^{-1} C^2 m^{-1}$	**
	permittivity	$4\pi\varepsilon_0$	$1.11265 \times 10^{-10} \mathrm{J}^{-1} \mathrm{C}^2 \mathrm{m}^{-1}$	g was to be a first to the second of the sec
	Bohr magneton	μ _s = efi/2m.	$9.27402 \times 10^{-24} \mathrm{J}\mathrm{T}^{-1}$	
	Nuclear magneton	$\mu_{N} = e \hbar / 2 m_{p}$	$5.05079 \times 10^{-27} \text{J} \text{ T}^{-1}$	
	Electron <i>g</i> value	g.	2.002 32.	
	Bonr radius	$a_0 = 4\pi \varepsilon_0 \hbar^2 / m_e \epsilon$	$5.29177 \times 10^{-11} \text{ m}$	
	Rydberg - constant	$R_{\bullet} = m_{\bullet}e^{4}/8h^{3}c$	$1.09737\times10^{5}\mathrm{cm^{-1}}$	
	Fine structure constant	$\alpha = \mu_0 e^2 c/2h$	7.29735×10^{-3}	
	Gravitational constant	G	$6.67259 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
	Standard î acceleration	, g	_ 9.806 65 .0. 2 -2	
	of free fall†			† Exact (defined) values
	fP	n μ m	e dk M G	Prefixes
	femto pico	nano micro milli	centi deci kilo mega giç	a a
	10-15 10-12	10-9 10-6 10-3	10 ⁻² 10 ⁻¹ 10 ³ 10 ⁶ 10	و و