UNIVERSITY OF SWAZILAND FACULTY OF HEALTH SCIENCES

INTEGRATTED BASIC SCIENCES (HSC-103) FINAL EXAM 2005/2006

MARKS 100

DURATION 3:

INSTRUCTIONS

- 1. READ THROUGH ALL QUESTIONS CAREFULLY BEFORE ANSWERING
- 2. EACH QUESTION CARRIES 20 MARKS
- 3. ANSWER ONLY FIVE QUESTIONS
- 4. ATTEMPT AT LEAST TWO QUESTIONS FROM EACH SECTION AND ANY ONE FROM EITHER OF THE SECTIONS
- 5. NO QUESTION PAPER SHOULD BE BROUGHT INTO NOT OUT OF THE EXAMINATION ROOM
- 6 BEGIN EACH QUESTION ON A SEPARATE SHEET OF PAPER
- 7. A PRRIODIC TABLE AND DATA SHEETS ARE PROVIDED
- 8. ALL CALCULATIONS / WORK OUTDETAILS SHOULD BE SUBMITTED WITH YOUR ANSWER SHEET(S)

SECTION A

QUESTION 1.

- (a) A particle starting at the origin moves according to the velocity-time graph shown in Figure 1.
 - (i) Find the accelerations $a_{0,4}$ for 0-4 s, $a_{4,8}$ for 4-8 s and $a_{8,14}$ for 8-14 s. (3 marks)
 - (ii) Sketch the acceleration-time graph.

(2 marks)

- (iii) Calculate the distance traveled at t = 4 s, t = 8 s and t = 14 s.
- (3 marks)

(iv) Sketch a clear distance-time graph for this motion.

(3 marks)

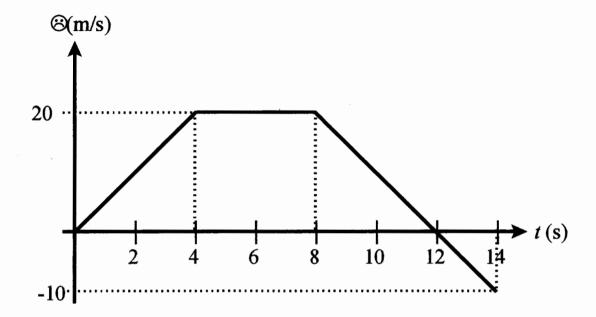


Figure 1.

- (b) A student pulls her 20 kg suitcase with a strap that makes an angle of 45° with the horizontal at constant velocity. The coefficient of kinetic friction between the ground and the wheels of the suitcase is 0.1.
 - (i) Make a complete resolved force diagram for the suitcase. (2 marks)
 - (ii) Write down the force equations for the suitcase. (2 marks)
 - (iii) Find the force F applied by the student. (4 marks)
 - (iv) What is the normal force on the suitcase? (1 mark)

QUESTION 2

(a) A tow truck pulls a 1000 kg car at constant speed by a tow bar which makes an angle of 35° above the horizontal. The coefficient of kinetic friction between the towed car and the road is 0.9. The car is pulled for a distance of 5 km.

(i) What is the force F applied on the car? (4 marks)
(ii) Find the work done by the truck on the car. (2 marks)
(iii) What is the work done by friction? (2 marks)

- (b) Show with the aid of equations why for the same change in momentum, fast collisions result in higher possibilities of damage than slow collisions. (6 marks)
- (c) A hiker of mass 70 kg gets a ride from a furniture flat bed pick-up truck. He holds on to the roll bar so that he cannot fall. The truck takes a 200 m radius turn at 120 km/hr. How much force must he use to grab the roll bar so that he does not get thrown off?

 (6 marks)

QUESTION 3

- (a) A hypodermic syringe contains medicine with the density of water. The barrel of the syringe has a cross-sectional area $A = 2.50 \times 10^{-5} \text{ m}^2$ and the needle has a cross-sectional area of $a = 1 \times 10^{-8} \text{ m}^2$. The blood pressure of the patient is 120/80. In injecting a patient, a force of 4 N is applied to the barrel. Use Bernoulli's equation to determine the speed with which the medicine enter the blood vessel under the two pressures? (10 marks)
- (b) A spinal tap is inserted into the spinal column of a patient. The cerebrospinal fluid in the tap rises to a height of 160 mm. The upper end of the tap is exposed to atmospheric pressure. The density of the fluid is the same as that of water. What is the

(i) absolute pressure in Pascals, (2 marks)
(ii) the gauge pressure in millimetres of mercury. (2 marks)

(c) An ice-bath is to be made from 500 g of ice at -10° C and water of mass m at 25° C. What is the minimum amount of water that must be added to the ice to make the ice-bath. Assume that no heat is lost to the surroundings.

(6 marks)

QUESTION 4

- (a) An industrial machine produces a sound at an average power of 100 W.
 - (i) At what distance r from the source is the sound level at the threshold of pain? (6 marks)
 - (ii) What should be the power of the source if the sound level is to be at 60 dB at the distance obtained from (i)?

 (3 marks)
- (b) The near point of a person is 5 m. What must be the focal length of the spectacle lenses for the person to read a newspaper at a distance of 25 cm? (3 marks)
- (c) Show with the aid of fully labeled diagrams how both real and virtual images can be formed by a converging lens. (8 marks)

QUESTION 5

- (a) What are the effects of electrical shocks above 10 mA on the human body? (2 marks)
- (b) An electric kettle is rated at 1000 W at 220 V(rms).
 - (i) How much current is drawn by the kettle? (2 marks)
 (ii) What is the resistance of the filament? (2 marks)
 - (iii) If the kettle is kept on for 10 minutes what is the cost of the electricity consumed assuming that electrical energy cost 35 cents per kilowatt-hour. (4 marks)

(c) Consider the network shown in Figure 2.

- (i) What is the effective resistance of the network? (4 marks)
- (ii) Comment on the effective resistance of resistors in parallel? (2 marks)

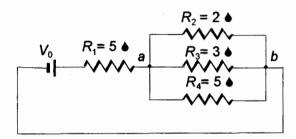


Figure 2.

(d) A step-down transformer is used for recharging a cell phone battery. The turns ratio in the transformer are 26:1 and is used with a 240 V (rms) household service. The transformer draws a current of 0.350 A from the house outlet.

(i) What is the voltage supplied to the battery? (2 marks)
(ii) What is the current supplied to the battery? (1 mark)
(iii) How much power is delivered to the battery? (1 mark)

SECTION B

ANSWER AT LEAST TWO QUESTIONS

QUESTION 5 [20 MARKS]

1 in. = 2.54 cm

a) Convert the following figures to the units indicated: [6]

ii)	1.02 kg g 25 mL L	iv) v)	72 pulse/minpulses/sec 20 oz/galg/L	
	50 μgmg 1.2x10 ²⁴ atomsmoles			
Recall	1 minute = 60	secs	1 oz = 28.4 g	

 $6.023x10^{23} = 1$ mole

b) i) A 2.027 mL drug weighing 5.13g was given to a patient. Calculate both the density and specific gravity of the drug given that the density of water is 1.0 g/mL. [2]

 $1 \, gal = 3.8 \, L$

ii) A nurse recorded the temperature of a patient as 96.8 °F. What is the temperature in °C given that: [2]

$${}^{o}F = \frac{9}{5}{}^{o}C + 32^{o}$$

- c) Write short notes explaining the differences between <u>any one</u> of the following <u>pairs</u>:
 - i) Accuracy and precision [2]ii) Systematic and random errors [2]
- d) The following weights of tablets were given to pregnant women to use as Iron supplements: 5.8 g, 6.2 g, 5.6 g and 5.9 g.

 Calculate:
 - i) The mean [2]
 - ii) Standard deviation [2]
 - iii) Coefficient of variation [1]
 - iv) % Relative error given that the right weight for iron supplementation as recommended by the WHO is 5.5 g.[1]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N - 1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 6 [20 MARKS]

- a). Explain Any Two of the following terms giving an example for each.
- i). Ionic bonding
- [2]
- ii) Covalent bond
- [2]
- iv). Co-ordinate bond
- [2]
- iv) Metallic bonding
- [2]
- b). Using Hunds rule, Agfbau builing up principle and the periodic table give the electronic configurations using atomic orbitals of the following elements:
 - i) Calcium, Ca [2]
 - ii) Iodine, I [2]
 - Also describe the role of <u>the above</u> ions in the body. In your description mention the function, the associated deficiency disorder and its most common dietary source. [4]
- b) Write short notes on any **Two** the following
 - i). Ionisation energy
- [2]
- ii). Electropositivity
- [2]
- iii) Electronegativity
- [2]
- iv) Electron Affinity
- [2]
- v) Atomic radii
- [2]
- c) Explain <u>any Two</u> of the following trends:
- (i) Atomic Radii in Angstrom units [2]

Н	Li	Na	K	Rb	Cs	
0.30	1.23	1.57	2.03	2.16	2.35	

(ii) ionisation energies in kJ/mol [2]

Na	Mg	Al	Si	P	S	Cl	Ar
496	737	577	786	1012	999	1255	1521

(iii) Pauling's Electronegativity coefficients (Unitless) [2]

Li	Be	В	С	N	0	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0

QUESTION 7 [20 MARKS]

- a) Adenosine triphosphate (ATP) is an important substance in all living cells. A sample with mass of 0.8138 g was analysed and found to contain 0.1927 g of Carbon C, 0.02590 g of hydrogen H, 0.1124 g of Nitrogen N and 0.1491 g of phosphorus P. The remainder was oxygen. Its formula weight was determined to be 507 g/mol.
 - i) Calculate the Empirical formula (in the form $C_v H_w N_x P_y O_z$) of Adenosine triphosphate (ATP). [8]
 - ii) Calculate the Molecular formula of Adenosine triphosphate (ATP) [2]
- b) Name the following compounds [5]
 - i) H₂CrO₄
 - ii) H₂SO₄
 - iii) Na₂SO₄
 - iv) KClO₄
 - v) NaHCO₃
- c) Write formulas for each of the compounds [5]
 - i) Calcium carbonate
 - ii) Hypochlorous acid
 - iii) Iodine pentafluoride
 - iv) Iron (III) oxide
 - v) Sodium thiosulphate

QUESTION 8 [20 MARKS]

- a) i) Define a buffer solution. Give one example. [2]
 - ii) Name three kinds of buffers found in the body. [3]
- b) Briefly discuss any one of the following: [6]
 - i) Respiratory Acidosis
 - ii) Metabolic Acidosis

In your discussion include the cause, the symptoms and the treatment.

c) A patient with a severe fever of 38.9 °C, a respiratory rate of 60/min. X-ray evaluation shows that pneumonia has developed on his left lung. The patient was given morphine and diazepam (valium) and ventillatory therapy. The laboratory values:

Pulse	60/min	Sodium	145mmol/L
CO ₂	43 mmol/L	Potassium	3.5mmol/L
HCO ₃	41 mEq/L	pН	7.43
Cl (mEq/L)	90	PCO ₂	63 mm Hg

- (i) What is the mechanism of this acid-base imbalance [2]
- (ii) What treatment would you prescribe [2]

- d) If 4.09 g H₃PO₄ is dissolved in 250 mL solution calculate:
 - i) Number of equivalents of H₃PO₄. [3]
 - ii) The Normality of the Solution. [1]
 - iii) The molar concentration of the solution. [1]

Question 9 [20 Marks]

- a) Define water solvency in terms of bonding to form electrolyte solutions [2].
- b) Define water pollution. [3]
- c) List and describe three major sources of water pollution. [5]
- d) Explain any three methods of purification. [5]
- e) Explain the difference between permanent and temporary water hardness. [5]

GENERAL DATA SHEET

```
Speed of light in vacuum c = 2.9978 \times 10^8 \text{ m/s}
Speed of sound in air = 334 \text{ m/s}
Gravitational acceleration = 9.80 m/s<sup>2</sup>
Universal gravitational constant G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2
Density of mercury = 1.36 \times 10^4 \text{ kg/m}^3
Density of water = 1000 \text{ kg/m}^3
Standard atmospheric pressure = 1.013 x 10<sup>5</sup> Pa
Gas constant R = 8.314 \text{ J/(K mol)}
Avogadro's number N_A = 6.022 \times 10^{23} \text{ mol}^{-1}
I_0 = 10^{-12} \text{ W/m}^2
1 calorie = 1 c = 4.186 J
1 food calorie = 1 Calorie = 1C = 10^3 calories = 4.186 \times 10^3 J
                                                 c(ice) = 2090 \text{ J/(kg K)} c(steam) = 2079 \text{ J/(kg K)}
c(water) = 4186 \text{ J/(kg K)}
                                                 L_v(water) = 2.260 \times 10^6 \text{ J/kg}
L_t(ice) = 3.33 \times 10^5 \text{ J/kg}
```

$$k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \,\mathrm{Nm^2/C^2}$$

Charge of an electron = -1.6 x 10^{-19} C Charge of a proton = +1.6 x 10^{-19} C 1 atomic mass unit = 1 amu = 1 u = 1.66 x 10^{-27} kg Electron mass, $m_e = 9.109 \times 10^{-31}$ kg Proton mass, $m_p = 1.673 \times 10^{-27}$ kg Neutron mass $m_p = 1.675 \times 10^{-27}$ kg

Useful Relations	SI						General Data		

(RT) _{298.15K} =2.4789 kJ/mol	789 kJ/mo		***************************************	rummin eldy man radional value de de la company de la comp	an inggreen frank fr		speed of light	2	2.997 925x10 ⁸ ms ⁻¹
$(RT/F)_{298.15K} = 0.025 693 V$.025 693 \	<i>-</i>					charge of proton	9	1.602 19x10 ⁻¹⁹ C
	100.15 298.15		500.15 1000.15				Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69.6	1 207.2.	2 347.0	69.61 207.22 347.62 695.13				Boltzmann constant	K	1.380 66x10 ⁻²³ J K ⁻¹
1mmHg=133.222 N m ⁻²	22 N m ⁻²						Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹
$hc/k=1.438 78x10^{-2} m K$	10 ⁻² m K								8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
1atm	1 (l cal	1 eV		1cm ⁻¹				
$=1.01325 \times 10^{5} \mathrm{Nm^{-2}}$		-4.184 J	=1.602 189x10 ⁻¹⁹ J	κ10 ⁻¹⁹ J	$=0.124$ x 10^{-3} eV) ⁻³ eV	Planck constant	4	6.626 18x10 ⁻³⁴ Js
=760torr			=96.485 kJ/mol	loi	$=1.9864$ x 10^{-23} J	(0^{-23})	-	h h	
=1 bar			= 8065.5 cm ⁻¹					$\frac{2\pi}{2\pi}$	$1.054 59 \times 10^{-34} \text{ Js}$
							Avogadro constant	L or Nav	6.022 14x10 ²³ mol ⁻¹
SI-units:							Atomis mass unit	n	1.660 54x10 ⁻²⁷ kg
$IL = 1000 ml = 1000cm^3 = 1 dm^3$	$= 1000cm^3$	= I dm	3				Electron mass	me	9.109 39x10 ⁻³¹ kg
1 dm = 0.1 m							Proton mass	m _D	$1.672 62 \times 10^{-27} \text{ kg}$
1 cal (thermochemical) = 4.184 J	$emical) = \iota$	4.184 J					Neutron mass	m _n	$1.674 93 \times 10^{-27} \text{ kg}$
dipole moment: 1 Debye = $3.335 64 \times 10^{-30}$ C m	1 Debye	= 3.335	$64 \times 10^{-30} \text{ C}$	m			Vacuum permittivity	$\varepsilon_{o} = \mu_{o}^{-1}c^{-2}$	8.854 188x10 ⁻¹² J ⁻¹ C ² m ⁻¹
force: $IN=IJ m^{-I} = Ikgms^{-2} = 10^3$ dyne	i ⁻¹ = 1kgms	$s^{-2} = 10^5$ (ure: IPa	pressure: $IPa=INm^{-2}=11\text{m}^{-3}$	m-3	Vacuum permeability	μ°	$4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
$IJ = I Nm$ power: $1W = 1J s^{-1}$	/m s ⁻¹			potential: 1V =1 J C ⁻¹	=1 J C ⁻¹		Bohr magneton	$\mu_B = \frac{e}{2m_e}$	$9.274~02$ x 10^{-24} JT ⁻¹
magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻²	(T=1Vsm ⁻²	=1JCsn		current: 1A=1Cs ⁻¹	=1Cs ⁻¹		Nuclear magneton	$\mu_{\rm N} = e^{i \vec{q} \vec{q}}$	$5.05079 \times 10^{27} \mathrm{JT}^{1}$
<u>Prefixes:</u>		***************************************					Gravitational constant	Ð	6.67259x10 ⁻¹¹ Nm ² kg ⁻²
u d	ш	m c	þ	k	M G		Gravitational	8	9,80665 ms ⁻²
nano	0	0	-	kilo		ga	acceleration		
10^{-12} 10^{-9}	10-6		$^{-2}$ 10^{-1}	10^{3}	10^6 10^9)³	Bohr radius	a ₀	5.291 77x10 ⁻¹¹ m

THE PERIODIC TABLE OF ELEMENTS

Group 1 2 3 7 4	IA IIA IIIB IVB	Period 1	1.008		2 Li Be	6.94 9.01	11 12	3 Na Mg	22.99 24.31	19 20 21 22	C	39.10 40.08 Sc 47.90	44.96	37 38 39 40	5 Rb Sr Y Zr		55 56 71 72	6 Cs Ba Lu Hf	137.3 174.9	87 88 103 104	7 Fr Ra Lr Und	
2	VB									23		0 50.94		41	g	-		[Ta		105	d Unp	
9	VIB		_				Ä	^		24	Ç	52.01		42	Mo	95.94	74	*	183.8	106	Cup	
7	VIIB						METALS			25	Mn	54.9		43	Tc	6.86	75	Re	186.2	107	Uns	
&		ž								26	Fe	58.85		44	Ru	101.1	92	S	190.2	108	Uno	
6	VIIIB	NON-METALS			METALLOIDS					27	ပိ	58.71		45	Rh	102.9	77	ŗ	192.2	109	Une	
10		LALS			SOIDS					28	Ż	58.71		46	Pd	_	78	P t	195.1			
1	IB				\					59	ر ر	63.54		47	Ag	107.9	62	Au	196.9			
12	IIB		•							30	Zn	65.37		48	P)	112.4	80	Hg	200.6			
13	IIIA			5	B	10.81	13	Al	26.9	31	Ğ	69.7		49	In	114.8	81	I	204.4			
14	IVA	[•	Ü	12.01	14	S	28.09	32	કુ	72.59		90	Sn	118.7	82	Pb	207.2			
15	VA			7	Z	14.01	1.5	Д	30.97	33	As	74.92		51	$\mathbf{S}\mathbf{p}$	121.8	83	Bi	208.9			
16	VIA			œ	0	16.66	16	Ø	90.2	34	ŝ	28.96		52	Te	127.6	84	Po	210			
17	VIIA			6	134	19.00	17	ס	\$ 4.5	35	ķ	1961		\$3		126.9	85	At	210			
18	VIIIA	2 He	8	10	Ž	20.18	18	ĀĒ	2	36	Ż	83.88		\$4	Xe	131.3	86	K	223			

	57	58	59	09	61	62	63	64	65	99	- 67	89	69	70
Lanthanides	La	S	Pr	PN	Pm	Sm	Eu	3	Tp	D,	H0	Er	Tm	$\mathbf{A}\mathbf{p}$
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	16	92	66	76	\$6	96	26	86	66	100	101	102
Actinides	Ac	Th		Ω	Np	Pu	Am	Cm	Bķ	Ct	ES	Fm	Md	Š
	227.0	227.0 232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255
			1.1	,		1 1 1	1							

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

GENERAL DATA SHEET

Speed of light in vacuum $c = 2.9978 \times 10^8 \text{ m/s}$ Speed of sound in air = 334 m/sGravitational acceleration = 9.80 m/s² Universal gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ Density of mercury = $1.36 \times 10^4 \text{ kg/m}^3$ Density of water = 1000 kg/m^3 Standard atmospheric pressure = 1.013 x 10⁵ Pa Gas constant R = 8.314 J/(K mol)Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $I_0 = 10^{-12} \text{ W/m}^2$ 1 calorie = 1 c = 4.186 J1 food calorie = 1 Calorie = $1C = 10^3$ calories = 4.186×10^3 J c(ice) = 2090 J/(kg K) c(steam) = 2079 J/(kg K)c(water) = 4186 J/(kg K) $L_f(ice) = 3.33 \times 10^5 \text{ J/kg}$ $L_v(water) = 2.260 \times 10^6 \text{ J/kg}$

 $k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9$ Nm²/C²

Charge of an electron = -1.6 x 10^{-19} C Charge of a proton = +1.6 x 10^{-19} C 1 atomic mass unit = 1 amu = 1 u = 1.66 x 10^{-27} kg Electron mass, $m_e = 9.109 \times 10^{-31}$ kg Proton mass, $m_p = 1.673 \times 10^{-27}$ kg Neutron mass $m_n = 1.675 \times 10^{-27}$ kg