

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

RESIT EXAMINATION PAPER 2019

TITLE OF PAPER

: ORGANIC CHEMISTRY AND BIOCHEMISTRY FOR

NURSES

COURSE CODE

GNS 112

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

: NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. Identify whether the following statements are true or false.
 - The overall polarity of organic molecules is high. [2 Marks]
 - (ii) Humans digest starch but not cellulose because of differences in the type of linkage between the glucose monomers of these substances [2 Marks]
 - (iii) The majority of glucose molecules exist in ring structure.
 - (iv) A carbon with three or more attached groups will be chiral. [2 Marks]
 - The DNA double helix is held together by hydrogen bonds and London (v) dispersion forces. [2 Marks]
- b. Draw saturated structures for the following compounds and fill in non-bonding valence electrons where they can be found.

	i)	Bromo, chloroethane	[3 Marks]
	ii)	Carbon monoxide	[3 Marks]
	iii)	Methanal	[3 Marks]
	iv)	2,4' dichloro biphenyl	[3 Marks]
	v)	2-chloro-4-ethoxyhexanal	[3 Marks]
'otal·			[25 Markel

Total:

[25 Marks]

QUESTION TWO

- a. Explain what is meant by the term 'anticoagulant' and give three examples of anticoagulants. [7 Marks]
- b. What is the difference between blood serum and blood plasma? [4 Marks]
- c. Steriods are a class of biomolecules made up of three six-membered carbon rings and one five-membered ring with an aliphatic chain attached on the five carbon ring. Give three examples of steroids and give the function of each example.

[6 Marks]

d. Draw all structural isomers of hexene, C₆H₁₂, that have unbranched carbon chains.

[8 marks]

Total:

[25 Marks]

QUESTION THREE

- a. Account for the following facts;
 - (i) Tertiary carbocations do not undergo S_N2 type of reactions. [5 Marks]
 - (ii) Cyclobutane, a cyclic alkane, and 1-butene, an alkene, have the same molecular formular [5 Marks]
 - (iii) Terminal alkenes form minor products of reactions involving the dehydration of alcohols. [5 Marks]
 - (iv) Carbon forms 4 covalent bonds yet its ground state electron configuration only has two unpaired electrons. [5 Marks]
 - (v) Non-bonding electron pairs also play a role in the determination of molecular geometry. [5 Marks]

Total: [25 Marks]

QUESTION FOUR

a) Consider the structure of butanal shown below and answer the following questions

- Fill in the non-bonding valence electrons that are missing from the line bond structure. [3 Marks]
- ii) Determine the hybridization of carbon 1 atom. [3 Marks]
- iii) Predict the bond angle of substituents bonded to carbon 1 [3 Marks]
- b) Draw the structural formular of 6-ethyl-3-decene. [6 Marks]
- c) Of the 20 amino acids found in our bodies, _____ of them must be ingested because our bodies cannot synthesize sufficient quantities of them. [4 Marks]
- d) What is the difference between E1 and E2 reactions? [6 Marks]

Total: [25 Marks]

QUESTION FIVE

a.	Give t	he molecular formula of a hydrocarbon containing five carbo	on atoms that is;
	(i)	An alkane	[2 Marks]
	(ii)	Cycloalkane	[2 Marks]
	(iii)	An alkene	[2 Marks]
	(iv)	An alkyne.	[2 Marks]
b.	Explai	n why the molecular formulars of the answers given in a	. (i) and (ii) are
	differe	ent.	[Marks 4]
c.	Draw	structural formulars of examples of the following class	sses of organic
	compo	ounds	
	(i)	Carboxylic acid	[2 Marks]
	(ii)	Ketone	[2 Marks]
	(iii)	Esters	[2 Marks]

d. Write a balanced chemical equation for the reaction of 2-pentyne and excess hydrogen. [5 Marks] Total:

(iv)

Secondary Amine

[25 Marks]

[2 Marks]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ¹ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
	٠.	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	$N_{\mathbf{A}}$	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	น	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e .	9.109 39 X 10 ⁻³¹ Kg
proton	$m_{_{p}}$	1.672 62 X 10 ⁻²⁷ Kg
neutron .	$m_{_{b}}$	1,674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε,	1.112 65 X 10 ⁻¹⁶ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\bullet}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
•		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e h/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	<i>ge</i>	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o h/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_e^4/8h^3c\epsilon_e^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	·G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10		1 erg 1 eV/n	nolecul	e	=	1 X 1 96 48	5 kJ mol	- 1
Prefixes	f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10°	μ micro 10 ⁻⁶				k kilo 10³	M mega 10 ⁶	G giga 109

				-				S	GROOPS		:							
		2	3	4	5	9	7	∞	6	10	Ξ	12	13	14	15	16	17	18
PERIODS	۲.	<u>≤</u>	HIB	IVB	УB	. VIB	VIIB		VIIIB		113	118	VIII	IVA	VA	VIA	. VIIA	VIIIA
	1.008																	4.00.3
<u> </u>	= -	•																11c
	6.941	9.012			•						Atomí	Atomic mass -	10.811	12.011	14,007	15.999	18.998	20.180
7	ធ	. Be									Syn	Symbol -	m +	່ວ	z	0	إنترا	- Ne
	-	4									Atom	Atomic No.	\$	9	7	∞	6	01.
	22.990	24:305			٠							•	26.982	28.086	30.974	32.06	35.453	39.948
m	Z	Mg				TRAN	TRANSITION ELEMENTS	EI.EM	ENTS				I.A.	S	Pu	S	ប	Ą۲
	Ξ	12				: ! !				`			13	4	1.5	. 16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	1	63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	×	స్	Sc	ij	>	ن	Mn	ĭ.e	ပိ	Ż	บื	Zu	පු	g	As	Se	Ŗ	ž
	61	20	21	22	23	24	25	. 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.9.1	106.42	107.87	112.41		118.71	121.75.	127.60	126.90	131.29
۲,	Rb	Si	>	Zr	î	Mo	Tc	Ru	몺	Pd	Ag	Ö	Ę	Sn	Sb	Ţe	_	×
	37	38	39	40	41	42	43	44	45	46	47	48		20	51	52	53	द्र
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22		196.97	200.59		207.2	208.98	(209)	(210)	(222)
9	౮	Ва	*La	Hŧ	Ta	≱	Re	ő	Ţ	Pt	Ąπ	Hg	F	Pb	ä	Po	At	Ru
	55	56	57	72	73	74	75	76	77		79	80	81	82	. 83	.84	85	98
	223	226.03	(722)	(261)	(292)	(263)	(292)	(265)	(266)									
7	j.	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	87	82	89	104	105	106	107 .	108	109	0								

	140.12	140.91	44.24	(145)	150.36	151.96	157.25	158.93	
*Lanthanide Series	ບໍ	Pr	Z Z	PH	ES	n n	ğ	ΗP	
	. 82	59	09	19	62	63	64	. 65	
**Actinide Series	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	
	Ţ	Ъa	Þ	Z	Pu .	Am	CH	Bk	
	06	6	26	93	94	56	96	76	
									1

26 75 75

(257) Fm 100

(252) Es 99

Tim 69 (258) Md

164.93 .Ho

() indicates the mass number of the isotope with the longest half-life.