UNIVERSITY OF SWAZILAND EXAMINATION 2009-10

TITLE OF PAPER: INTRODUCTORY PHYSICAL CHEMISTRY

COURSE NUMBER: C202

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

- (a) Explain clearly what is meant by a thermodynamically reversible process. Why is the reversible work done on a system the maximum work? [5]
- (b) 2 moles of oxygen gas (which can be assumed to be perfect with C_p =29.4 J K⁻¹mol⁻¹) are confined in a volume of 11.2 dm³ at 273 K. The gas is then heated reversibly to 373 K at constant volume.

(i)	What is the initial pressure of the gas?	[4]

- (ii) How much work is done on the system? [2]
- (iii) What is the increase in the internal energy of the system? [5]
- (iv) How much heat was added to the system? [2]
- (v) What is the final pressure of the gas? [4]
- (vi) What is the change in the enthalpy? [3]

Question 2 (25 marks)

Naphthalene, C₁₀H₈, melts at 80 °C. If the vapour pressure of the liquid is 10 Torr at 85.5 °C and 40 Torr at 119.3°C and that of the solid is 1 Torr at 52.6 °C;

- (a) Calculate the $\Delta_{\text{vap}}H$ of the liquid, the boiling point temperature, T_b , and $\Delta_{\text{vao}}S$ at T_b [10]
- (b) Calculate the vapour pressure at the melting point [4]
- (c) Assuming the melting point and the triple temperature are the same, calculate $\Delta_{\text{sub}}H$ and $\Delta_{\text{firs}}H$
- (d) What must the temperature be if the pressure of the solid is to be less than 10⁻⁵ Torr?

Question 3(25 marks)

- (a) Explain the significance of a physical observable being a state function. List at least five(5) state functions you encountered in this course. [5]
- Three moles of a perfect gas at 27 °C expand isothermally and reversibly from 20 dm³ to 60 dm³. Calculate w, q, ΔU, ΔH and ΔS. [10]
- (c) Suppose the expansion in (b) was carried out isothermally but irreversibly against zero external pressure i.e. $p_{ex} = 0$, which of the properties calculated in (b) would have different values and what are those values. [4]
- (d) Define or briefly explain the following terms
 - (i) Boyle temperature
 - (ii) Critical temperature
 - (iii) Principle of corresponding states

Question 4(25 marks)

The water gas reaction is

$$H_2(g) + CO_2 \rightarrow H_2O(g) + CO(g)$$

- Answer the following equations using the information given in the table below: (a) Calculate $\Delta_r H^{\theta}$, $\Delta_r S^{\theta}$, and $\Delta_r G^{\theta}$ for the reaction at 298 K. Comment on the spontaneity of the reaction at this temperature. [10]
- Calculate $\Delta_r H^{\theta}$ at 1200 for the above reaction (b)

[8]

Assuming, $\Delta_r S^{\theta}$ for this reaction is independent of temperature, calculate $\Delta_r G^{\theta}$ and the (c) equilibrium constant, Kp, at 1200 K.

Data for question 4. (Note $C_p = a + bT + cT^2$ in the range 273 K to 1500 K)

substance	$\Delta_t H^0(298 \text{ K})$	S ⁰ (298 K)	C _p /J K ⁻¹ mol ⁻¹					
`	kJ mol ⁻¹	J K ⁻¹ mol ⁻¹	a	b	С			
$H_2O(g)$	-241.82	188.83	30.0	10.0×10^{-3}	12.0 x 10 ⁻⁷			
CO(g)	-110.53	197.67	26.9	7.0 x 10 ⁻³	-8.0 x 10 ⁻⁷			
CO ₂ (g)	-393.51	213.74	26.0	44.0 x 10 ⁻³	-148 x 10 ⁻⁷			
$H_2(g)$	0	130.68	29.0	-0.8×10^{-3}	20.0 x 10 ⁻⁷			

Question 5 (25 marks)

- Discus the physical interpretation/significance of the Maxwell relations, use the following relation to illustrate your argument; $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$. [5]
- A Carnot cycle uses 1.00 mol of a monatomic gas (C_{V,m}=3/2 R) as the working substance from an initial state of 10.0 atm and 600 K. It expands isothermally to a pressure of 1.00 atm (step 1), and then adiabatically to a temperature of 300 K (step 2). This expansion is followed by an isothermal compression (step 3), and then an adiabatic compression (step 4) back to the initial state. Calculate q, w, ΔU , ΔH , ΔS , ΔS_{total} , and ΔG for each step and for the cycle as whole.

Question 6 (25 marks)

- (a) Measurement of the boiling point elevation can provide a determination of the molar mass of a solute.
 - (i) What factors guide the selection of a solvent for such measurements? [5]
 - (ii) Clearly describe how a value of K_b for a chosen solvent may be determined experimentally. [5]
 - (iii) With the value of K_b determined, show how an unknown molecular mass may be estimated. [5]
- (b) The vapour pressure of chloroform, CHCl₃, and carbon tetrachloride, CCl₄, at 25 °C are 199.1 Torr and 114.5 Torr, respectively. Consider a liquid mixture containing 1 mol of each liquid in equilibrium with its vapour. Calculate
 - (i) the total vapour and [6]
 - (ii) the mole fraction of each component in the vapour. [4]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e^{-}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹ ·
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
•	$\hbar = \hbar/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B}={\rm e}\hbar/2{\rm m_e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 4.184 joules (J) 1 eV = 1.602 2 X 10 ⁻¹⁹ J				1 erg 1 eV/n	nolecul	e	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixes	femto	pico	nano	μ micro 10 ⁻⁶	milli	centi	deci	kilo		G giga 10°	

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	He	7	20.180	Nc	0.	39.948	Ar	18	33.80	Kr	36	131.29	Xe	54	(222)	Rn	: 28	3		
	17	VIIA				18.998 2	<u> </u>	6	35.453	Ü	17 ·	79.904		35	-		53	-	_				
	16	VIA				15.999	<u> </u>	oc.,	 -		<u>1</u> 6	╁		34		Te	52		Po	84			
	15	٧A				14.007	z	7	30,974- 3		-15	74.922 7		33	121.75 12		_	<u> </u>	Bi		-		
						-		•			-	-			<u> </u>		_	<u> </u>		_	-		
	14	IVA	-			12.011	ပ _	Ŷ	28.086	Si	14	72.61	g	32	118.7	Sn	20	207.2	Pb	82			
	13	IIIA				10.811	B A	ς Δ	26.982	ΑI	13	69.723	Ga	31	114.82	In	49	204.38	Ţ	81			
	12 1	IIB				Atomic mass - 10.81	1	١.				65.39	Zn	30	112.41	Cg	48	200.59	Hg	000			-
	11	IB				Atomi	Symbol	Atomic No.				63.546	Cu	29	107.87	Ag	47	196.97	Au	. 79			
	10											58.69	z __	28	106.42	. bd .	46	195.08	Pt	78	(267)	Uun	011
GROUPS	6	VITTB	-		-		-			ENTS		58.933	ပိ	27	102,91	Rh	45	192.22	Ir	11	(500)	Une	و ن :
İS	ော		-	•			-			ELEMENTS	٠. ا	55.847	Fe	26	101.07	Ru .	44	190.2	°S	16	(265)	Uno	108
	1	VIIB								TRANSITION		54.938	Mn	25	98.907	Jc	43	186.21	Re	75	(292)	Uns	107.
	9	VIB		,						TRAN		51.996	Ċ	.24	95.94	Wo	42	183.85	≯	74	(263)	Unh	106
٠	5	AB AB	•							-		50.942	>	23	92,906	S :	14	180.95	Ľ	73	(292)	Ha	1,05
,	4	IVB	_									47.88	Ë	22	91.224	7 5	9	178.49	Hf	72	(261)	Rf	104
- j	3	IIIB							-			44.956	သို	21	88.906	× ;	رد	138.91	<u>ٿ</u>	57	(227)	**Ac	88
	2	IIA I			0.00	210.6	ņe,	4	24.305	MIG C:	71	40.078		07	87.62	2 2	85	137.33	EZ .	26	226.03	<u>~</u>	88
-	-	A1	1.000	៩ -	170 7	1.341		o	22.990		=	39.098	<u>~</u> :	6	85.468	5 t		132.91	S	55	223	H.	- 87
	040444	remons	•	-		٠ (~		(1			4		ı	ά			9			7	

e Series	Series
*Lanthanide Series	**Actinide Series
*Lan	**

174.97 Lu 71	(260) Lr 103	
174 7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
173.04 Yb 70	(259) No 102	
168.93 Tm 69	(258) Md	
. 167.26 Er 68 :	(257) Fm 100	
164.93' Ho 67	(252) Es 99	-life.
162.50 Dy 66	(251) Cf 98	with the longest haif-life.
158.93 Tb 65	(247) Bk 97	i the lon
157.25 Gd 64	(247) Cm 96	ope with
151.96 Eu 63	(243) A m 95	fthe isol
150.36 Sm 62	(244) Pu 94	number of the isotope
(145) , Pm 61	237.05 Np 93	e mass n
144.24 . Nd . 60	238.03 U 92	cates the
140.12 140.91 144.24 Ce Pr . Nd 58 59 60	232.04 231.04 Th Pa 90 91	() indi
140.12 Ce 58	232.04 · Th 90	