UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A list of integrals, a data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) For a monatomic gas, one measure of the average speed of the atoms is the root mean square speed, $v_{rms} = \langle v^2 \rangle^{\frac{1}{2}} = (3kT/m)^{\frac{1}{2}}$, in which m is the mass of the gas atom and k the Boltzmann constant. Use this formula to calculate the de Broglie wavelength for xenon atoms at 100 K and 500 K. [6]
- (b) The following data were observed in an experiment on the photoelectric effect from potassium:

Kinetic energy x10 ¹⁹ J	4.49	3.09	1.89	1.34	0.700	0.311
Wavelength						
nm	250	300	350	400	450	500

- (i) Plot a graph of kinetic energy against frequency in s^{-1} .
- (ii) Use your graph to determine the value of Planck's constant, the work-function and threshold frequency of potassium. [8]

(c) Which of the following functions are eigenfunctions of $\frac{d^2}{dx^2}$? For each eigenfunction give the eigenvalue:

- (i) $5\sin^3 x$ (ii) $5x^3$ (iii) $5e^{-3x}$ (iv) $\ln x$ [6]
- (d) Normalize the function $\psi = \cos\theta$, $0 \le \theta \le 2\pi$ [5]

Question 2 (25 marks)

(a)	Cons	ider the following species: $N_2^+, N_2^-, N_2^-, N_2^{2-}$	
	(i)	Sketch the molecular orbital energy diagram for N_2 .	[2]
	(ii)	Write the electron configuration for each of the four species listed	above and
		calculate the bond order for each.	[8]
	(iii)	Arrange the species in order of increasing bond energy	[1]
	(iv)	Arrange the species in order of increasing bond length	[1]
	(v)	Derive the ground state term symbol for each species	[8]
(b)	Disti	nguish between bonding and anti-bonding molecular orbitals	[5]

Question 3 (25 marks

- (a) Determine the number of translational, rotational and vibrational degrees of freedom in the following molecules:
 (i) CH₃Cl
 (ii) OCS
 (iiii) C₆H₆
 (iv)H₂CO
 [6]
- (b) Classify each of the following molecules as a spherical, a symmetric or an asymmetric top:

(i) CH_3Cl (ii) CCl_4 (iii) SO_2 (iv) SF_6 [4]

- (c) The rotational constant of ²D¹⁹F determined from microwave spectroscopy is 11.007 cm⁻¹. The atomic masses of ¹⁹F and ²D are 18.9984032 u and 2.0141018 u, respectively. Calculate the bond length in ²D¹⁹F to the maximum number of significant figures consistent with this information. [7]
- (d) The pure rotational Raman spectrum of ${}^{14}N_2$ shows a spacing of 7.99 cm⁻¹ between adjacent rotational lines.
 - (i) Calculate the value of the rotational constant B. [2]
 - (ii) What is the spacing between the unshifted line v_{ex} and the pure rotational line closest to v_{ex} ? [2]
 - (iii) If 540.8 nm radiation from an argon laser is used as the exciting radiation, find the wavelength of the two pure rotational Raman lines nearest the unshifted lines. [4]

Question 4(25 marks)

- (a) Describe the fundamental vibrational modes of H₂O and CO₂. For each molecule indicate which modes will show infrared activity and why. [8]
- (b) Explain the difference between a "hot band" and an "overtone band" in infrared spectra. How would you distinguish the two experimentally? [5]
- (c) The anharmonicity constant for ${}^{35}Cl^{19}F$ is 1.25 x 10⁻² and the fundamental frequency is 793.2 cm⁻¹. The isotopic masses for ${}^{35}Cl$ and ${}^{19}F$ are 34.9688 u and 18.9984 u, respectively.
 - (i) Calculate the energies of the first four vibrational levels in cm^{-1} . [4]
 - (ii) Calculate the difference in energy between the v = 25 and v = 26 levels using (1) the harmonic oscillator model and (2) the anharmonic oscillator model. Comment on the difference of your results from the two calculations. [4]
 - (iii) Calculate the force constant of the bond in this molecule. [4]

3

Question 5(25 marks)

- (a) Describe the physical origin of quantization energy for a particle confined to moving inside a one-dimensional box. [5]
- (b) The ground state normalized wavefunction of a particle in a one-dimensional box of

length L is: $\psi = \sqrt{\frac{2}{L}} Sin\left(\frac{\pi x}{L}\right)$

(i) Show that ψ is an eigenfunction of the operator below and give the eigenvalue.

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$
[5]

- (ii) Find the average value of the coordinate x. [5]
- (iii) Find the average value of the linear momentum p_x [5]
- (iv) What is the probability of finding the particle in the middle third of the box? [5]

Question 6(25marks)

- (a) The term symbol of a particular state is quoted as ⁴D_{5/2}. What are the values of L, S and J? What is the minimum number of electrons which could give rise to this? Suggest a possible electronic configuration. [4]
- (b) Derive the term symbols for the electron configuration $ns^{1}nd^{1}$ [4]
- (c) The term symbol of a particular states of two different atoms are quoted as (i) ${}^{2}D_{7/2}$ and (ii) ${}^{0}P_{1}$. Explain why these are erroneous. [4]

[3]

- (d) What is spin orbit coupling?
- (e) Which of the following transitions are allowed and which are forbidden in a hydrogenic atom. Explain.
 (i) 2p → 3p
 (ii) 2p → 5s
 (iii) 3d → 3s
- (f) State whether the following transitions are allowed or forbidden in the emission spectrum of helium. In each case give a reason for your answer. (i) $4^{3}P_{2} \rightarrow 2^{3}S_{1}$ (ii) $4^{1}D_{2} \rightarrow 2^{1}S_{0}$ [4]

4

USEFUL INTEGRALS

(1)
$$\int x^n dx = \frac{1}{(n+1)} x^{n+1}, \quad n \neq -1$$

(2)
$$\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}} \quad a > 0, \text{ n positive integer}$$

(3)
$$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax + \cos t \tan t$$

- (4) $\int \sin \theta d\theta = -\cos \theta + \cos \tan t$
- (5) $\int x \sin^2 ax dx = \frac{x^2}{4} \frac{x \sin 2ax}{4a} \frac{\cos 2ax}{8a} + cons \tan t$
- (6) $\int \cos^2 \theta d\theta = \frac{\theta}{2} + \frac{1}{4} \sin 2\theta + \cos \tan t$
- (7) $\int_{-\infty}^{\infty} x \sin x dx = \frac{\pi^2}{2}$
- (8) $d\tau = r^2 dr \sin\theta d\theta d\phi$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	11	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	$1.672\ 62\ X\ 10^{-27}\ Kg$
neutron .	m _n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε ₀	1.112 65 X 10^{-10} J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	Se	2.002 32
Bohr radius	$a_o = 4\pi\epsilon_o h/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	⁻ 7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e} e^{4}/8h^{3}c\epsilon_{o}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	r G	6.672 59 X 10 ¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10	1 erg 1 eV/n	1 erg 1 eV/molecule			1 X 10" J 96 485 kJ mol"			
Prefixes	f femto 10 ⁻¹⁵	*	µ micro 10 ⁻⁶	milli		deci	k kilo 10 ³	M mega 10 ⁶	G giga 10°	

PERIODIC TABLE OF ELEMENTS

								GI	ROUPS	:		-	•.					
	1	2	3	4	5	6.	7	8	9	10	11	12	13	14	15	. 16	17	18
PERIODS	1/	ΠΛ	IIIB	IVB	·VB	, VIB	VIIB		VIIIB		IB	11B	IIIA ·	IVA	VA	VIA	VIIA	VIIIA
·· 1	1,008 I I I	•												-				4.003 11c 2
2	6.941 Li 3	9.012 . Bc . 4			2				•				\mathbf{B}_{5}	12.011 C	14.007 N 7	15.999 O 8	18.998 F 9	20.180 - Ne . 10
3	22.990 Na 11	24:305 Mg 12			• •	TRAN	SITION	ELEM	ENTS	. .			26.982 Al 13	28.086 Si 14	30.974 P 15	32.06 S 16	35.453 El 17	39.948 Ar 18
4	39.098 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.942 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58:69 ** Ni 28	-63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 Ás 33	78.96 Se 34	79.904 Br 35	83.80 Kr . 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.906 Nb 41	95.94 Mo 42	98.907 Tc 43	101:07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 1 53	131.29 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 *La 57	178.49 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	223 Fr 87	226.03 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107 .	(265) Uno 108	(266) Une 109	(267) Uun 110								
	anthanio			140.12 Cc 58	140.91 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 ,Ho .:67	167-26 - Er 68	168.93 Tm 69	173.04 Yb 70	174.97 Lu 71	
*1	^k Actinid	c Series	• ·	232.04 Tlı 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	(244) Pu - 94	(243) Am 95	(247) Cm 96	(247) Bk 97	(251) Cf 98	(252) Es 99	(257) Fm 100	(258) Md 101	(259) No 102	(260) Lr 103	

() indicates the mass number of the isotope with the longest half-life.

· ¥