UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2012/13

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 50 marks)
- (ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1.	The symbol for the	element tungs	sten is	•		
	(A) At	(B) Tn	(C) W	(D) Ta	(E) no	ne of these
2.	A small amount of (A) homogene (D) pure subst	ous mixture	(B) hetero	example of a _ geneous mixtur		mpound
3.	Which one of the form (A) S, sodium	-		•	_	y matched? (E) Fl, fluorine
4.	Which one of the f (A) blood (E) beer	~ .			ter	(D) liquid mercury
5.	Which of the follow 1. burning hydrogo 2. melting ice 3. decomposition of 4. dissolving salt i	en of calcium carl n water	oonate			
	(A) 2, 3, 4	(B) 1, 3, 4	(C) 1, 3	(D) 1, 2	(E) 1,	4
6.	Accuracy refers to (A) how close a m (B) how close a m (C) how close a m (D) how close a m (E) how close a m	easured number easured number easured number easured number	er is to the our is to other er is to the t	calculated value or measured num true value		
7.	Which atom has the (A) carbon-14 (E) neon-20				ı-16	(D) fluorine-19
8.	There are of $^{34}_{16}S$.	electrons,		_ protons, and _	***************************************	_ neutrons in an atom
		(B) 16	,16,18	(C) 18,18,	34	(D) 18, 18, 16

	Inotono	A h J	noo (0/)	Man	(amu)			
	Isotope 79Br	50.54	IICE (70)	78.91	(amu)			
	81Br	49.46		80.91				
	DI	49.40		80.91	03			
(A	.) 78.91	(B) 79.87	(C) 79.	91	(D) 80.9	2	(E) 79.19	
10. Of the	following,	only (B) Zn	is no	t a met	al.			
(A	.) Rb	(B) Zn	(C) Si		(D) Pb		(E) Li	
11 Anel	ement in the	bottom left c	omer of t	he neri	odic table			
		metal or meta					ly a metal	
			non-met	al	(D) is de	finite	ly a non-meta	1
		y a metalloid			、 /			
12. Whic	h one of the	following mo	lecular fo	rmulas	s is also a	n emr	oirical formula	?
		_				-	(E) Hg ₂ Cl	
`	,	` , -		. •	()	•	. , , ,	_
		s largest numb						
(A	$n^{118}_{50}Sn^{2+}$	(B) $^{114}_{49}$ In	$(C)_{52}^{126}T$	e^{2-}	(D) $^{112}_{48}$ C	d	(E) $^{132}_{54}$ Xe ²⁺	
14 Whiel	h of the follo	owing compou	inde wou	ld vou	expect to	he io	nic?	
		(B) FeSO ₄		•	-			
, (2.	.) 04118	(B) 1 CBO ₄	(C) DIC	/14	(D) C12C		(L) 503	
15. Which	h species be	low is the sulp	phide ion	?				
(A	PO_{3}^{3}	(B) S ² -	(C) SO	2- 3	(D) P^{3-}		(E) SO ₄ ² -	
			_					
		ame pair is inc						
(A	$) Fe_3(PO_4)_2$	iron(II) phosp	phate	(B) Fe	$_{2}(SO_{3})_{3}$	iroi	n(III) sulphite	
(C) $Fe_3(PO_3)_2$	iron(II) phosp	phide	(D) Fe	SO_3	iro	n(II) sulphite	
(E) FePO ₄	iron(III) phos	sphate					
17. When	the following	ng equation is	balanced	l, the co	oefficient	s are	•	
N!	$H_{3}(g) + O_{3}$	$(g) \rightarrow NO_2$ (g	g) + H ₂ O ((g)				
) 1, 1, 1, 1	(B) 4,	7, 4, 6		(C) 2, 3,	2, 3	(D) 1	, 3, 1, 2
18. There	are	sulphur	atoms in	25 mol	ecules of	C ₄ H	$_{1}S_{2}$.	
(A) 50	(B) 3.8×10^{24}		(C) 6.0	10^{25}		(D) 100	(E) 1.5×10^{25}
_	ormula of am amu.	ımonium sulp	hate is (N	IH4)2S0	O ₄ . The m	olecu	lar weight of	this compound
***************************************		(B) 132.14	(C) 114	.09	(D) 118.	07	(E) 98.64	

20. 1	he mass % of I	H in methane C	² H ₈ 1S	.		
	(A) 25.13	(B) 4.032	(C) 74.87	(D) 92.26	(E) 7.743	
21 (one mole of	cont	ains the largest	number of ato	ms.	
21.	(A) (NH ₄) ₂ S((B) (cHe (C) A	1(NO2)2	(D) Na ₂ PO ₄	(E) H ₂ O ₂
	(21) (11114)20	<i>54</i> (<i>b</i>) ((0) 1	4(1103/3	(2) 11431 04	(2) 11202
22. A	sample of CH					
	$(A) 2.2 \times 10^{23}$	(B) 38	$(C)3.3\times10^{24}$	(D) 4	4×10^{23}	(E) 9.5
00 T	r	c v	1	0.100 1	1 4 0	•
23. H	low many gram					
	(A) 21.2 g	(B) 106 g	(C) 5.30 g	(D) 212 g	(E) 10.6 g	
		l (B) H	KCl ICl, NH ₃ , KC	Cl (C) I		${f H}_3$
	(D) HCI, HC	$_{2}$ H_{3} U_{2} , KCI	(E) H	$1C_2H_3U_2$, KC	L	
25. V	What are the spe	ectator ions in t	he reaction bet	ween Ba(OH)2	(aq) and HCl	O₃(aq)
	(A)Ba ²⁺ and H (E) OH ⁻ only		I ⁺ and OH ⁻	(C) Ba ²⁺ and	ClO ₃ (D) I	H ⁺ and ClO ₃ ⁻
26 TI	ha halamaad nat	iomio ografian	. fan muaaimitati	an of CoCO is	han aarraarra	alutions of
	he balanced net			=	viien aqueous se	olutions of
N	a ₂ CO ₃ and C	aCl ₂ are mixed	l is			
(A)	$2Na^+(aq) + C$	${}^{2}O_{3}^{2-}(aq) \rightarrow N_{6}^{2}$	a, CO, (aq)	(B) 2 Na ⁺ (a	$(aq) + 2Cl^{-}(aq)$	→ 2NaCl (aq)
		•	-			
	$Na^+(aq) + Cl$				$)+CO_3$ (aq)	$\rightarrow CaCO_3(s)$
(E)	$Na_2CO_3(aq)$	$+ CaCl_2 (aq) -$	→ 2NaCl (aq) +	$CaCO_3(s)$		
	he concentration				en 0.250 L of a	5.00 M
so	lution was dilu	ted to 1.00 L is	SN	1.		
	(A) 2.50	(B) 0.0500	(C) 20.0	(D) 1.25	(E) 0.800	
20 4	1 1	* , , , ,	0. 5 N. 61 T. 171	1 ,1	0.1 . 1.	
28. A	radio station b					m.
	(A) 3.10	(B) 2.90	(C) 4.71	(D) 2.75	(E) 3.84	
29. V	What is the de B (A) 6.6 x 10 ⁻³	roglie wavelen (B)1.5 x10	gth (m) of a 2.0 (C) 5.3 x1	0 mg object mo 0 ⁻²⁸ (D) 2	oving at a speed 2.6 x10 ⁻³⁰ (1	1 of 500 m/s? E) 3.8 x10 ²⁹
20 4	11 - 641 1-14-1		L -L -11 1 41		41	······ 1
30. A	ll of the orbital (A) principal	_	hal (C) m		***************************************	
	Which of the sul		lo not exist due	to the constra	ints upon the az	zimuthal
ųι	antum number		(C) 4 p	(D) 4 s	(E) none of t	hece
	(A) 41	(D) 4 a	(C) + p	(D) 48	(15) HOME OF	TIE2C
22 4	m alaatusu as	ant have the	oméssus =====1=		_ m	
34. A	n electron can (A) 6, 1, 0	TO Have the qu	anium numbers	M = 1	$\frac{1}{(E)}$, $\frac{m_l}{2}$	•
	$(\Delta J \cup 1, U)$	(11) 2, 4, 4	(U) J, 4, -4	$(D_f I, I, V)$	(11) 2, 4, 1	

33.	Which set of three	_		-		
	(A) 3, 2, 2	(B) 3, 1, 1	(C) 3, 2, 3	(D) 2, 1, 0	(E) 2,	3, 3
34.	Which of the foll (A) 2, 2, 0, +1 (E) 1, 1, 0, 0	-		-	• • •	y, m _s) (D) 2, 1, +2, +1/2
35.	Which electron of	onfiguration	n denotes an ator	n in its ground	state?	
	(A) 1s	2s ↑ ↓	2p			
	(B) 1s	2s	2р			
	(C) 1s	2s	2p ↑↓			
	$(D) \begin{bmatrix} 1s \\ \uparrow \downarrow \end{bmatrix}$	2s	2p			
	(E) 1s	2s	2p	1		
36.	The ground state (A) $1s^22s^22p^6$ (D) $1s^22s^22p^6$	electron co 3s ² 3p ³ 3s ² 3p ⁶ 4s ¹	nfiguration of P (B) 1s ² 2s ² 2 _I (E) 1s ² 2s ² 2 _I	is	1s ² 2s ² 2p ⁶ 3s	s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹
37.	The ground state (A) [Ar]2s ² 2p (D) He]2s ² 2p	configuration (B)	on of bromine is [Ar] 3d ¹⁰ 4s ² 4p ⁵ [Kr]4d ¹⁰ 5s ² 5p ⁵	(C)	[Ar]4s ² 4p ⁵	
38.	Which two eleme (A) Pd and Pt (E) No two elements	(B)	e same ground-s Cu and Ag the same groun	(C) Fe and	Cu (D) Cl and Ar
39.	Which element w those of argone? (A) S	ould be exp	ected to have ch	emical and phy	ysical prope (E) Cl	rties closest to

40.	(A) Na > M	g > Si > P > P > Na >	> Ar (B) I Mg (D)	Mg > Na > P	> Si > Ai	Na, P, Si and Ar?
41.	Which of the fol	_				
		•	(B) S^2 , Cl,	•) S, Cl, Ar, l	X .
	(D) $Si^{2^{-}}, P^{2^{-}}, S$	² ,Cl ²	(E) F ⁻ ,Cl ⁻ ,l	Br ⁻ ,I ⁻		
42.	Of the following	•	has the largest	first ionization	n energy?	
	(A) Cl	(B) F	(C) C	(D) P	(E) Br	
43.	The ion with the (A) Br ⁻	smallest dian	neter is	<u> </u>		
	(A) Br ⁻	(B) Cl ⁻	(C) N^{3}	(D) F ⁻	(E) O^{2-}	
44.	The acidity of ca	rbonated water	er is due to the			
	(A) presence	of sulphur	(B) reaction	of CO ₂ and H	I ₂ O ((c) addition of acid
	(D) nonmetal	oxides	(E) none of	the above		
45.	Based on the oct (A) P ³⁺	et rule, phosp	horus most like	ly forms a	ion	l.
	(A) P^{3+}	(B) P^{3-}	(C) P^{5+}	(D) P^{5-}	(E) P ⁺	
46.	Which of the followed	uration?	have to gain tv	vo electrons in	order to ach	ieve a noble gas
		Na Se	Br		0 0 0	
	(A) Br (B)) Ca (C) I	Na (D) S	S, Se (E)	Ca, S, Se	
47.	What is the elect	ron configura	tion for the Co	2+ ion?		
	(A) $[Ar]4s^236$ (E) $[Ne]3s^23p$	\mathbf{I}^{5} (B)	[Ar]3d ⁷	(C) [Ar]3d ⁵	I)	D) [Ar]4s ² 3d ⁹
48.	The Lewis struct	ure of PF ₃ sho	ows that the cen	tral phosphoru	s atom has _	
	nonbonding and	i	bonding electr	on pairs.		
	nonbonding and (A) 2, 2	(B) 1, 3	(C) 3, 1	(D) 1, 2	(E) 3, 3	
49.	The molecular ge	eometry of the	e BeCl ₂ molecu	le is	•	
	(A) linear	(B) bent	(C) tetrahedral	(D) trigon	al planar	(E) T-shaped
50.	Of the molecules	s below, only	is	polar.		
	(A) SbF ₅	(B) AsH ₃	(C) I,	(D) SF ₆	(E) CH ₄	

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions. In all calculations answers must have the correct number of significant figures.

Question 1 (25 marks)

- (a) Name the following compounds (i) NiF₂·4H₂O (ii) Hg₂Cl₂ (iii) S₂Cl₂ (iv) HIO(aq) (8)
- (b) Give the chemical formulas of the following species:
 (i) copper(II) perchlorate hexahydrate
 (ii) vanadium(V) oxide
 (4)
- (c) The mass composition of a compound used to generate O₂ in the laboratory is: 31.91% K, 28.93% Cl, the remainder being oxygen. Determine the empirical formula of the compound. (4)
- (d) Octane, C₈H₁₈, is typical of the molecules found in petrol.
 - (i) Calculate the mass (in grams) of one octane molecule.
 - (ii) Determine the number of octane molecules in 1 mL of octane, the mass of which is 0.82 g. (6)
- (e) Determine the molar mass of $NiF_2 \cdot 4H_2O$ (3)

Question 2 (25 marks)

(a) The contents of Beaker 1 are mixed with those of Beaker 2. If a reaction occurs, write the net ionic reaction and identify the spectator ions. (6)

Beaker 1	Beaker 2
(i) NiSO ₄ (aq)	(NH ₄) ₂ CO ₃ (aq)
(ii) H ₃ PO ₄ (aq)	CuCl ₂ (aq)
(iii) K ₂ S(aq)	AgNO ₃ (aq)

- (b) Name the salt that is produced and write the full molecular equation for the acid-base neutralization reaction between:
 - (i) Potassium hydroxide and acetic acid, CH₃COOH
 - (ii) Ammonia and Hydrochloric acid. (6)

- (c) Identify the oxidizing agent and reducing agent in each of the following reactions:
 - (i) $2 \text{ Al(s)} + \text{Cr}_2\text{O}_3(s) \rightarrow \text{Al}_2\text{O}_3(s) + 2\text{Cr}(s)$
 - (ii) $6 \operatorname{Li}(s) + \operatorname{N}_2(g) \rightarrow 2\operatorname{Li}_3\operatorname{N}(s)$
 - (iii) $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$ (6)
- (d) A mixture of 7.45 g iron(II) oxide and 0.111 mol of aluminum metal is placed in a crucible and heated in a high temperature oven, where the reduction of the oxide occurs:
 - Write the balanced equation for the reduction (products are Fe and Al₂O₂). (i)
 - (ii) Determine the maximum amount of iron (in moles of Fe) that can be produced.
 - (iii) Calculate the mass of excess reactant remaining in the crucible. **(7)**

Question 3 (25 marks)

- Ultraviolet radiation has wavelengths less than about 350 nm. What is the energy (a) accompanying the emission of 1.00 mol of photons at this wavelength?
- Calculate the wavelength of an electron with a velocity of 3.0×10^7 m/s. (b) (3)
- (c) Explain why the lattice enthalpy of magnesium oxide (3850 kJ/mol) is greater than that of magnesium sulphide (3405 kJ/mol).
- (d) Write the Lewis structure of the following species and state the number of lone pairs on the central atom.
 - (i) ClO₂
- (ii) ClF₃

(4)

(6)

- Write the Lewis structures and predict the shapes of (e)
 - (i) IF₄ (ii) OSbCl₃ (Sb central atom)
- (f) Write the Lewis structure of each reactant, identify the Lewis acid and the Lewis base and then write the Lewis formula of the product (complex):
 - $SO_2 + Cl^- \rightarrow$ (i)
 - AlCl₃ + Cl⁻ → (ii)

(6)

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	**	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{e}	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	$\mathbf{m}_{\mathfrak{p}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\bullet \bullet} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal =		4.184 joules (J)			1 erg			1 X 10 ⁻⁷ J			
1 eV =		1.602 2 X 10 ⁻¹⁹ J			1 eV/molecule			96 485 kJ mol ⁻¹			
Prefixes	f femto 10 ⁻¹⁵	pico	nano	μ micro 10 ⁻⁶	milli	centi	deci	k kilo 10³	M mega 10 ⁶	G giga 109	

PERIODIC TABLE OF ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	ĪΛ	IΙΛ	IIIB	IVB	VB	VIB	VIIB		VIIIB		18	IIB	AIII	IVA	VA	VIA	VIIA	VIIIA
	1,008								•									4.003
1 1	11																•	He
l	,	·															• •	2
	6.941	9.012									Atomi	ic mass 🗕	10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be									Syn	nbol —	► B	C	N	0	F	-Ne
	3	4									Atom	ic No. —	5	6	7	8	9	10
	22.990	24:305	1										26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	RELEM	IENTS				Al	Si ·	P	S	€I	Ar
	11	12					~~~.						13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Tc	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Ru
	55	56	57	72	73	74	75	76	77	78	.79	80	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	87	88	89	104	105	106	107	108	109	110								

*Lanthanide Series

**Actinide Series

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Cc	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	. 65	66	167	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Tli	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	J03

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

:

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1	Α	В	C	D	Е	26	A	В	C	D	Е
2	Α	В	C	D	Е	 27	Α	В	C	D	Е
3	Α	В	C	D	Е	28	A	В	С	D	Е
4	Α	В	С	D	E	29	A	В	С	D	E
5	A	В	С	D	Е	30	A	В	С	D	Е
6	A	В	С	D	Е	31	A	В	С	D	E
7	A	В	С	D	Е	32	A	В	С	D	Е
8	Α	В	C	D	Е	33	Α	В	С	D	Ε
9	Α	В	C	D	Е	34	Α	В	C	D	Ε
10	Α	В	C	D	Е	35	A	В	C	D	Е
11	Α	В	C	D	E	36	A	В	C	D	E
12	Α	В	C	D	E	37	Α	В	C	D	Ε
13	Α	В	С	D	Ε	38	Α	В	C	D	Е
14	Α	В	С	D	E	39	Α	В	C	D	Е
-15	Α	В	С	D	E	40	Α	В	C	D	Е
16	Α	В	C	D	Е	41	Α	В	С	D	Е
17	Α	В	C	D	E	42	Α	В	C	D	Ε
18	Α	В	С	D	Ε	43	Α	В	C	D	Ε
19	A	В	C	D	E	44	Α	В	C	D	Е
20	Α	В	С	D	E	45	Α	В	С	D	E
21	Α	В	C	D	E	46	Α	В	С	D	E
22	A	В	C	D	E	47	Α	В	С	D	E
23	A	В	C	D	Е	48	Α	В	С	D	Е
24	Α	В	C	D	Е	49	A	В	С	D	E
25	A	В	C	D	Е	50	A	В	C	D	E