SUPPLEMENTARY EXAMINATION 2012/13

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME: THREE (3) HOURS

INSTRUCTIONS:

(i) Answer all questions in section A (total 50 marks)
(ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1. The symbol for the element tungsten is \qquad .
(A) At
(B) Tn
(C) W
(D) Ta
(E) none of these
2. A small amount of sand added to water is an example of a \qquad .
(A) homogeneous mixture
(B) heterogeneous mixture
(C) compound
(D) pure substance
(E) solid
3. Which one of the following has the element name and symbol correctly matched?
(A) S, sodium
(B) Sn , tin
(C) Ir, iron
(D) N , neon
(E) Fl, fluorine
4. Which one of the following is a pure substance?
(A) blood
(B) sea water
(C) sweetened water
(E) beer
5. Which of the following are chemical processes?
6. burning hydrogen
7. melting ice
8. decomposition of calcium carbonate
9. dissolving salt in water
(A) 2, 3, 4
(B) $1,3,4$
(C) 1,3
(D) 1,2
(E) 1, 4
10. Accuracy refers to \qquad .
(A) how close a measured number is to zero
(B) how close a measured number is to the calculated value
(C) how close a measured number is to other measured numbers
(D) how close a measured number is to the true value
(E) how close a measured number is to infinity
11. Which atom has the smallest number of neutrons?
(A) carbon-14
(B) nitrogen-14
(C) oxygen-16
(D) fluorine-19
(E) neon-20
12. There are \qquad electrons, \qquad protons, and \qquad neutrons in an atom of ${ }_{16}^{34} S$.
(A) $16,16,34$
(B) $16,16,18$
(C) $18,18,34$
(D) $18,18,16$
(E) $16,16,20$
13. The element X has two naturally occurring isotopes. The masses (amu) and \% abundances of the isotopes are given in the Table below. The average atomic mass of the element is \qquad amu.

Isotope	Abundance (\%)	Mass (amu)
${ }^{79} \mathrm{Br}$	50.54	78.9183
${ }^{81} \mathrm{Br}$	49.46	80.9163

(A) 78.91
(B) 79.87
(C) 79.91
(D) 80.92
(E) 79.19
10. Of the following, only \qquad is not a metal.
(A) Rb
(B) Zn
(C) Si
(D) Pb
(E) Li
11. An element in the bottom left comer of the periodic table \qquad .
(A) is either a metal or metalloid
(B) is definitely a metal
(C) is either a metalloid or a non-metal
(D) is definitely a non-metal
(E) is definitely a metalloid
12. Which one of the following molecular formulas is also an empirical formula?
(A) $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$
(B) $\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{C}_{4} \mathrm{H}_{8}$
(D) $\mathrm{C}_{10} \mathrm{H}_{8}$
(E) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
13. Which species has largest number of electrons?
(A) ${ }_{50}^{118} \mathrm{Sn}^{2+}$
(B) ${ }_{49}^{114} \mathrm{In}$
(C) ${ }_{52}^{126} \mathrm{Te}^{2-}$
(D) ${ }_{48}^{112} \mathrm{Cd}$
(E) ${ }_{54}^{132} \mathrm{Xe}^{2+}$
14. Which of the following compounds would you expect to be ionic?
(A) $\mathrm{C}_{4} \mathrm{H}_{8}$
(B) FeSO_{4}
(C) SiCl_{4}
(D) $\mathrm{Cl}_{2} \mathrm{O}$
(E) SO_{3}
15. Which species below is the sulphide ion?
(A) $\mathrm{PO}_{3}{ }^{3-}$
(B) S^{2-}
(C) $\mathrm{SO}_{3}{ }^{2-}$
(D) P^{3-}
(E) $\mathrm{SO}_{4}{ }^{2-}$
16. Which formula/name pair is incorrect?
(A) $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ iron(II) phosphate
(B) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
iron(III) sulphite
(C) $\mathrm{Fe}_{3}\left(\mathrm{PO}_{3}\right)_{2}$ iron(II) phosphide
(D) FeSO_{3}
iron(II) sulphite
(E) $\mathrm{FePO}_{4} \quad$ iron(III) phosphate
17. When the following equation is balanced, the coefficients are \qquad .
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $1,1,1,1$
(B) $4,7,4,6$
(C) 2, 3, 2, 3
(D) $1,3,1,2$
(E) $4,3,4,3$
18. There are \qquad sulphur atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
(A) 50
(B) 3.8×10^{24}
(C) 6.0×10^{25}
(D) 100
(E) 1.5×10^{25}
19. The formula of ammonium sulphate is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. The molecular weight of this compound is \qquad amu.
(A) 128.02
(B) 132.14
(C) 114.09
(D) 118.07
(E) 98.64
20. The mass $\%$ of H in methane $\mathrm{C}_{2} \mathrm{H}_{8}$ is \qquad .
(A) 25.13
(B) 4.032
(C) 74.87
(D) 92.26
(E) 7.743
21. One mole of \qquad contains the largest number of atoms.
(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(B) $\mathrm{C}_{6} \mathrm{H}_{6}$
(C) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(D) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(E) $\mathrm{H}_{2} \mathrm{O}_{2}$
22. A sample of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ with a mass of 19 g contains \qquad atoms of hydrogen.
(A) 2.2×10^{23}
(B) 38
(C) 3.3×10^{24}
(D) 4.4×10^{23}
(E) 9.5
23. How many grams of sodium carbonate contain 0.100 mol carbon atoms?
(A) 21.2 g
(B) 106 g
(C) 5.30 g
(D) 212 g
(E) 10.6 g
24. Which of the following are weak electrolytes?
$\mathrm{HCl}, \quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \quad \mathrm{NH}_{3}, \mathrm{KCl}$
(A) $\mathrm{HCl}, \mathrm{KCl}$
(B) $\mathrm{HCl}, \mathrm{NH}_{3}, \mathrm{KCl}$
(C) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{NH}_{3}$
(D) $\mathrm{HCl}, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{KCl}$
(E) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{KCl}$
25. What are the spectator ions in the reaction between $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ and $\mathrm{HClO}_{3}(\mathrm{aq})$
(A) Ba^{2+} and H^{+}
(B) H^{+}and OH^{-}
(C) Ba^{2+} and $\mathrm{ClO}_{3}{ }^{-}$
(D) H^{+}and $\mathrm{ClO}_{3}{ }^{-}$
(E) OH^{-}only
26. The balanced net ionic equation for precipitation of CaCO_{3} when aqueous solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and CaCl_{2} are mixed is \qquad .
(A) $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
(B) $2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})$
(C) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})$
(D) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
(E) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CaCO}_{3}$ (s)
27. The concentration (M) of an aqueous methanol produced when 0.250 L of a 5.00 M solution was diluted to 1.00 L is \qquad M.
(A) 2.50
(B) 0.0500
(C) 20.0
(D) 1.25
(E) 0.800
28. A radio station broadcasts at 103.5 MHz . The wavelength of the signal is \qquad m.
(A) 3.10
(B) 2.90
(C) 4.71
(D) 2.75
(E) 3.84
29. What is the de Broglie wavelength (m) of a 2.0 mg object moving at a speed of $500 \mathrm{~m} / \mathrm{s}$?
(A) 6.6×10^{-31}
(B) 1.5×10^{30}
(C) 5.3×10^{-28}
(D) 2.6×10^{-30}
(E) 3.8×10^{29}
30. All of the orbitals in a given subshell have the same value of the \qquad quantum number.
(A) principal
(B) azimuthal
(C) magnetic
(D) A and B
(E) B and C
31. Which of the subshells below do not exist due to the constraints upon the azimuthal quantum number?
(A) 4 f
(B) 4 d
(C) 4 p
(D) 4 s
(E) none of these
32. An electron cannot have the quantum numbers $\mathrm{n}=$ \qquad , $1=$ \qquad $\mathrm{m}_{l}=$ \qquad .
(A) $6,1,0$
(B) $3,2,2$
(C) $3,2,-2$
(D) $1,1,0$
(E) 3, 2, 1
33. Which set of three quantum numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m} l$) corresponds to a 3 d orbital?
(A) 3, 2, 2
(B) $3,1,1$
(C) $3,2,3$
(D) $2,1,0$
(E) 2, 3, 3
34. Which of the following is a valid set of four quantum numbers?($\mathrm{n}, \mathrm{l}, \mathrm{m} l, \mathrm{~m}_{\mathrm{S}}$)
(A) $2,2,0,+1 / 2$
(B) $2,1,1,-1 / 2$
(C) $1,0,1,+1 / 2$
(D) $2,1,+2,+1 / 2$
(E) $1,1,0,0$
35. Which electron configuration denotes an atom in its ground state?
(A)

(B)

(C)

(D)

(E)

36. The ground state electron configuration of P is \qquad .
(A) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
(B) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad$ (C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{1}$
(D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
(E) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 p^{3}$
37. The ground state configuration of bromine is
(A) $[\mathrm{Ar}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$
(B) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
(C) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
(D) He$] 2 s^{2} 2 p^{5}$
(E) $[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} 5 \mathrm{p}^{5}$
38. Which two elements have the same ground-state electron configuration?
(A) Pd and Pt
(B) Cu and Ag
(C) Fe and Cu
(D) Cl and Ar
(E) No two elements have the same ground-state electron configuration.
39. Which element would be expected to have chemical and physical properties closest to those of argone?
(A) S
(B) K
(C) Ne
(D) F
(E) Cl
40. Of the following, which gives the correct order for atomic radius for $\mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{Si}$ and Ar ?
(A) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}>\mathrm{Ar}$
(B) $\mathrm{Mg}>\mathrm{Na}>\mathrm{P}>\mathrm{Si}>\mathrm{Ar}$
(C) $\mathrm{Ar}>\mathrm{Si}>\mathrm{P}>\mathrm{Na}>\mathrm{Mg}$
(D) $\mathrm{Ar}>\mathrm{P}>\mathrm{Si}>\mathrm{Mg}>\mathrm{Na}$
(E) $\mathrm{Si}>\mathrm{P}>\mathrm{Ar}>\mathrm{Na}>\mathrm{Mg}$
41. Which of the following is an isoelectronic series?
(A) $\mathrm{B}^{5-}, \mathrm{Sr}^{4-}, \mathrm{As}^{3-}, \mathrm{Te}^{2-}$
(B) $\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{Ar}, \mathrm{K}^{+}$
(C) $\mathrm{S}, \mathrm{Cl}, \mathrm{Ar}, \mathrm{K}$
(D) $\mathrm{Si}^{2-}, \mathrm{P}^{2-}, \mathrm{S}^{2-}, \mathrm{Cl}^{2-}$
(E) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
42. Of the following atoms, which has the largest first ionization energy?
(A) Cl
(B) F
(C) C
(D) P
(E) Br
43. The ion with the smallest diameter is \qquad .
(A) Br^{-}
(B) Cl^{-}
(C) N^{3-}
(D) F^{-}
(E) O^{2-}
44. The acidity of carbonated water is due to the \qquad .
(A) presence of sulphur
(B) reaction of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
(C) addition of acid
(D) nonmetal oxides
(E) none of the above
45. Based on the octet rule, phosphorus most likely forms a \qquad ion.
(A) P^{3+}
(B) P^{3-}
(C) P^{5+}
(D) P^{5-}
(E) P^{+}
46. Which of the following would have to gain two electrons in order to achieve a noble gas electron configuration?
$\mathrm{S} \quad \mathrm{Ca} \quad \mathrm{Na} \quad \mathrm{Se} \quad \mathrm{Br}$
(A) Br
(B) Ca
(C) Na
(D) S, Se
(E) $\mathrm{Ca}, \mathrm{S}, \mathrm{Se}$
47. What is the electron configuration for the Co^{2+} ion?
(A) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
(B) $[\mathrm{Ar}] 3 \mathrm{~d}^{7}$
(C) $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
(D) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$
(E) $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{10}$
48. The Lewis structure of PF_{3} shows that the central phosphorus atom has \qquad nonbonding and \qquad bonding electron pairs.
(A) 2,2
(B) 1,3
(C) 3,1
(D) 1,2
(E) 3,3
49. The molecular geometry of the BeCl_{2} molecule is \qquad .
(A) linear
(B) bent
(C) tetrahedral
(D) trigonal planar
(E) T-shaped
50. Of the molecules below, only \qquad is polar.
(A) SbF_{5}
(B) AsH_{3}
(C) I_{2}
(D) SF_{6}
(E) CH_{4}

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth $\mathbf{2 5}$ marks. Answer any two questions. In all calculations answers must have the correct number of significant figures.

Question 1 (25 marks)

(a) Name the following compounds
(i) $\mathrm{NiF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
(iii) $\mathrm{S}_{2} \mathrm{Cl}_{2}$
(iv) $\mathrm{HIO}(\mathrm{aq})$
(b) Give the chemical formulas of the following species:
(i) copper(II) perchlorate hexahydrate
(ii) vanadium(V) oxide
(c) The mass composition of a compound used to generate O_{2} in the laboratory is: 31.91% $\mathrm{K}, 28.93 \% \mathrm{Cl}$, the remainder being oxygen. Determine the empirical formula of the compound.
(d) Octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, is typical of the molecules found in petrol.
(i) Calculate the mass (in grams) of one octane molecule.
(ii) Determine the number of octane molecules in 1 mL of octane, the mass of which is 0.82 g .
(e) Determine the molar mass of $\mathrm{NiF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Question 2 (25 marks)

(a) The contents of Beaker 1 are mixed with those of Beaker 2. If a reaction occurs, write the net ionic reaction and identify the spectator ions.

Beaker 1	Beaker 2
(i) $\mathrm{NiSO}_{4}(\mathrm{aq})$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})$
(ii) $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$	$\mathrm{CuCl}_{2}(\mathrm{aq})$
(iii) $\mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})$	$\mathrm{AgNO}_{3}(\mathrm{aq})$

(b) Name the salt that is produced and write the full molecular equation for the acid-base neutralization reaction between:
(i) Potassium hydroxide and acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$
(ii) Ammonia and Hydrochloric acid.
(c) Identify the oxidizing agent and reducing agent in each of the following reactions:
(i) $2 \mathrm{Al}(\mathrm{s})+\mathrm{Cr}_{2} \mathrm{O}_{3}$ (s) $\rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Cr}(\mathrm{s})$
(ii) $6 \mathrm{Li}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})$
(iii) $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(d) A mixture of 7.45 g iron(II) oxide and 0.111 mol of aluminum metal is placed in a crucible and heated in a high temperature oven, where the reduction of the oxide occurs:
(i) Write the balanced equation for the reduction (products are Fe and $\mathrm{Al}_{2} \mathrm{O}_{2}$).
(ii) Determine the maximum amount of iron (in moles of Fe) that can be produced.
(iii) Calculate the mass of excess reactant remaining in the crucible.

Question 3 (25 marks)

(a) Ultraviolet radiation has wavelengths less than about 350 nm . What is the energy accompanying the emission of 1.00 mol of photons at this wavelength?
(b) Calculate the wavelength of an electron with a velocity of $3.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$.
(c) Explain why the lattice enthalpy of magnesium oxide ($3850 \mathrm{~kJ} / \mathrm{mol}$) is greater than that of magnesium sulphide ($3405 \mathrm{~kJ} / \mathrm{mol}$).
(d) Write the Lewis structure of the following species and state the number of lone pairs on the central atom.
(i) $\mathrm{ClO}_{2}{ }^{-}$
(ii) ClF_{3}
(e) Write the Lewis structures and predict the shapes of
(i) $\mathrm{IF}_{4}{ }^{-}$
(ii) OSbCl_{3} (Sb central atom)
(f) Write the Lewis structure of each reactant, identify the Lewis acid and the Lewis base and then write the Lewis formula of the product (complex):
(i) $\mathrm{SO}_{2}+\mathrm{Cl}^{-} \rightarrow$
(ii) $\mathrm{AlCl}_{3}+\mathrm{Cl}^{-} \rightarrow$

General data and fundamental constants

Quantity
Speed of light
Elementary charge
Faraday constant
Boltzmann constant
Gas constant

Planck constant

Avogadro constant
Atomic mass unit Mass
electron
proton
neutron
Vacuum permittivity
Vacuum permeability
Magneton
Bohr
nuclear
g value
Bohr radius
Fine-structure constant
Rydberg constant
Standard acceleration of free fall
Gravitational constant

Symbol
c
e
$F=N_{A} e$
k
$R=N_{A} k$

h

$h=\mathrm{h} / 2 \pi$
N_{A}
u
m_{e}
m_{p}
m_{a}
$\varepsilon_{o}=I / \mathrm{c}^{2} \mu_{o}$
$4 \pi \varepsilon_{o}$
μ_{o}
$\mu_{\mathrm{B}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{c}}$
$\mu_{\mathrm{N}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$
g_{e}
$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \Pi / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}$
$\alpha=\mu_{0} e^{2} c / 2 h$
$\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{\mathrm{e}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{o}{ }^{2}$
g

Value
$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$1.602177 \times 10^{-19} \mathrm{C}$
$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$8.314{51 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}^{-1}$
$8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$6.2364 \times 10 \mathrm{~L} \mathrm{Torr}^{\mathrm{K}^{-1} \mathrm{~mol}^{-1}}$
$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$1.05457 \times-10^{-34} \mathrm{~J} \mathrm{~s}$
$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
$1.66054 \times 10^{-27} \mathrm{Kg}$
$9.10939 \times 10^{-31} \mathrm{Kg}$
$1.67262 \times 10^{-27} \mathrm{Kg}$
$1.67493 \times 10^{-27} \mathrm{Kg}$
$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-7} \mathrm{~m}^{-1}$
$4 \pi \times 10^{-7} \cdot \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
$5.05079 \mathrm{X}^{10^{-27} \mathrm{JT}^{-1}}$
2.00232
$5.29177 \times 10^{-11} \mathrm{~m}$
-7.29735×10^{-3}
$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=4.184$ joules (J)	l erg	$=1 \times 10^{.7 \mathrm{~J}}$
$1 \mathrm{eV}=$	$1.6022 \times 10^{-19} \mathrm{~J}$	$\mathrm{l} \mathrm{eV} /$ molecule

Prefixes f p n $\quad \mathrm{f}$ m. $\mathrm{c} \quad \mathrm{d} \quad \mathrm{k} \quad \mathrm{M} \quad \mathrm{G}$

femto	pico	nano	micro milli	centi	deci	kilo	mega giga		
10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

PERIODIC TABLE OF ELEMENTS

() indicates the mass number of the isotope wilth the longest half-life.

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STUDENT ID NUMBER: \qquad
Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1	A	B	C	D	E			26	A	B	C	D
E												
2	A	B	C	D	E		27	A	B	C	D	E
3	A	B	C	D	E		28	A	B	C	D	E
4	A	B	C	D	E		29	A	B	C	D	E
5	A	B	C	D	E		30	A	B	C	D	E
6	A	B	C	D	E			31	A	B	C	D
E												
7	A	B	C	D	E		32	A	B	C	D	E
8	A	B	C	D	E		33	A	B	C	D	E
9	A	B	C	D	E		34	A	B	C	D	E
10	A	B	C	D	E		35	A	B	C	D	E
11	A	B	C	D	E		36	A	B	C	D	E
12	A	B	C	D	E		37	A	B	C	D	E
13	A	B	C	D	E		38	A	B	C	D	E
14	A	B	C	D	E		39	A	B	C	D	E
15	A	B	C	D	E		40	A	B	C	D	E
16	A	B	C	D	E		41	A	B	C	D	E
17	A	B	C	D	E		42	A	B	C	D	E
18	A	B	C	D	E		43	A	B	C	D	E
19	A	B	C	D	E		44	A	B	C	D	E
20	A	B	C	D	E		45	A	B	C	D	E
21	A	B	C	D	E		46	A	B	C	D	E
22	A	B	C	D	E		47	A	B	C	D	E
23	A	B	C	D	E		48	A	B	C	D	E
24	A	B	C	D	E		49	A	B	C	D	E
25	A	B	C	D	E		50	A	B	C	D	E

