UNIVERSITY OF SWAZILAND

غې ۲۰۰۰ د

FINAL EXAMINATION - 2013, MAY

TITLE OF PA	PER : Introductory Chemistry II
COURSE NU	IMBER : C112
TIME	: Three Hours
INSTRUCTIO	DNS :
	1. Answer all questions in Section A (Total 40 marks)
	2 Answer any three questions in Section B (each question is 20
	2. Answer any three questions in Section B (each question is 20
	marks)
NB:	Non-programmable electronic calculators may be used
	A data sheet, a periodic table and answer sheet (for Section A) are
	attached
Usefu	l data and equations: 1 atm = 760 Torr = 760 mmHg
	1 atm = 101325 Pa
	Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$
	Van der Walls equation: $P = \frac{nRT}{V-nb} - \frac{n^2a}{V^2}$

This Examination Paper Contains Six Printed Pages Including This Page

1. 28

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

Section A

1. Objects can possess energy as _

- (a) Endothermic energy
- (b) Potential energy
- (c) Kinetic energy
- A) a only
- B) b only
- C) c only
- D) a and c
- E) b and c
- 2. Which one of the following will change the value of an equilibrium constant?
 - A) Changing temperature
 - Adding other substances that do not react with any of the species involved in the B) equilibrium
 - C) Varying the initial concentrations of reactants
 - D) Varying the initial concentrations of products
 - E) Changing the volume of the reaction vessel
- 3. Which of the following equations shows an incorrect relationship between pressures given

in terms of different units?

- 1.20 atm = 122 kPa A)
- $152 \text{ mm Hg} = 2.03 \times 10^4 \text{Pa}$ B)
- C) 0.760 atm = 578 mm Hg
- D) 1.0 torr = 2.00 mm Hg
- 1.00 atm = 760 torr E)

4. The structure of 2,3-dimethylheptane is _____

- 5. Of the following, all are valid units for a reaction rate except ______.
 - A) mol/L
 - B) M/s
 - C) mol/hr
 - D) g/s
 - E) mol/L-hr

6. The value of K_{eq} for the following reaction is 0.25:

 $SO_2(g) + NO_2(g) \longrightarrow SO_2(g) + NO(g)$

The value of K_{eq} at the same temperature for the reaction below is ______.

$$2SO_2(g) + 2NO_2(g) \longrightarrow 2SO_3(g) + 2NO(g)$$

- A) 0.50
- B) 0.063
- C) 0.12
- D) 0.25
- E) 16

7. Which one of the following conditions would always result in an increase in the internal

energy of a system?

- A) The system loses heat and does work on the surroundings
- B) The system gains heat and does work on the surroundings
- C) The system loses heat and has work done on it by the surroundings
- D) The system gains heat and has work done on it by the surroundings
- E) None of the above is correct
- 6. Of the following, ______ is a correct statement of Boyle's law.
 - A) PV = constantB) $\frac{P}{V} = \text{constant}$ C) $\frac{V}{P} = \text{constant}$ D) $\frac{V}{T} = \text{constant}$ E) $\frac{n}{P} = \text{constant}$
- 8. Which statement about addition reactions between alkenes and HBr is <u>false</u>?
 - A) The addition occurs at the double bond.
 - B) Bromine attacks the alkene carbon atom possessing a partial positive charge.
 - C) A hydrogen atom attaches to the alkene carbon atom possessing a partial negative charge.
 - D) The π bond breaks in the course of the reaction.
 - E) The proposed mechanism involves radicals.
- 9. The value of ΔE for a system that performs 111 kJ of work on its surroundings and gains 89 kJ

of heat is ______ kJ.

- A) -111
- B) -200
- C) 200
- D) -22
- E) 22
- 10. Which of the following expressions is the correct equilibrium-constant expression for the

reaction below?

(NH₄)₂Se (s) ---- 2NH₃ (g) + H₂Se (g)

- A) $[NH_3][H_2Se] / [(NH_4)_2Se]$
- B) $[(NH_4)_2Se] / [NH_3]^2 [H_2Se]$

- C) 1 / [(NH₄)₂Se]
- $D) \qquad [NH_3]^2 [H_2Se]$
- E) [NH₃]₂ [H₂Se] / [(NH₄)₂Se]

11. Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

 $2NO_2 \rightarrow 2NO + O_2$

In a particular experiment at 300 °C, $[NO_2]$ drops from 0.0100 to 0.00650 M in 100 s. The rate of disappearance of NO₂ for this period is _____ M/s.

- A) 0.35
- B) 3.5×10^{-3}
- C) 3.5×10^{-5}
- D) 7.0×10^{-3}
- E) 1.8×10^{-3}

12. What is the general formula for a ketone?

- A) R-O-R
- B) R-CO-R'
- C) R-CO-OH
- D) R-OH
- E) R-CHO

13. The volume of an ideal gas is zero at ______.

- A) 0°C
- B) -45 °F
- C) -273 K
- D) -363 K
- E) -273 °C

14. The equilibrium constant for the gas phase reaction

 $2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$

is Keg = 230 at 300°C. At equilibrium, ______.

- A) Products predominate
- B) Reactants predominate
- C) Roughly equal amounts of products and reactants are present
- D) Only products are present
- E) Only reactants are present

The data in the Table below were obtained for the reaction:

$A + B \rightarrow P$

Experiment Number	[A] (M)	[B] (M)	Initial Rate (M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

- 15. The rate law for this reaction is rate = _____.
 - A) k[A][B]
 - B) k[P]
 - k[A]²[B] C)
 - D) k[A]²[B]²
 - E) k[A]2

16. The reaction below is exothermic:

$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$

Le Châtelier's Principle predicts that ______ will result in an increase in the number of

moles of SO_3 (g) in the reaction container.

- A) Increasing the pressure
- B) Decreasing the pressure
- C) Increasing the temperature
- D) Removing some oxygen
- E) Increasing the volume of the container

C)

D)

A)

18. The magnitude of the rate constant is ______.

- A) 38.0
- B) 0.278
- C) 13.2
- D) 42.0
- E) 2.21

19. The reaction

4Al (s) + $3O_2$ (g) $\rightarrow 2 Al_2O_3$ (s) $\Delta H^\circ = -3351 \text{ kJ}$

_____, and therefore heat is ______ by the reaction. is

- A) Endothermic, released
- B) Endothermic, absorbed
- C) Exothermic, released
- D) Exothermic, absorbed
- E) Thermoneutral, neither released nor absorbed

- 20. As the $[H_3O^+]$ in a solution decreases, the $[OH^-]$
 - A) Increases and the pH increases.
 - B) Increases and the pH decreases.
 - C) Decreases and the pH increases.
 - D) Decreases and the pH decreases.

21. _____ could be the formula of an alkene.

- A) C₃H₈
- B) C₃H₆
- C) C₆H₆
- D) C₁₇H₃₆
- E) CH₈

22. Which one of the following graphs shows the correct relationship between concentration and time for a reaction that is second order in [A]?

23. Which structure below represents an aldehyde?

NH₂

24. How many moles of gas are there in a 45.0 L container at 25.0°C and 500.0 mm Hg?

E)

A) 0.630

D)

- B) 6.11
- C) 18.4
- D) 1.21
- E) 207

25.

A sample of calcium carbonate [CaCO₃ (s)] absorbs 45.5 J of heat, upon which the temperature of the sample increases from 21.1 °C to 28.5 °C. If the specific heat of calcium

carbonate is 0.82 J/g-K, what is the mass (in grams) of the sample?

- A) 3.7
- B) 5.0
- C) 7.5
- D) 410
- E) 5.0 x 10³

- 26. The hybridization of the central carbon atom in an aldehyde is ______.
 - A) sp
 - B) sp³
 - C) sp^2
 - D) d^2sp^3
 - E) sp⁴
- 27. The effect of a catalyst on an equilibrium is to ______.
 - A) Increase the rate of the forward reaction only
 - B) Increase the equilibrium constant so that products are favored
 - C) Slow the reverse reaction only
 - D) Increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture
 - E) Shift the equilibrium to the right
- 28. Hydrocarbons containing only single bonds between the carbon atoms are called
 - •
 - A) Alkenes
 - B) Alkynes
 - C) Aromatics
 - D) Alkanes
 - E) Ketones
- 29. One difference between first- and second-order reactions is that ______.
 - A) The half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
 - B) The rate of both first-order and second-order reactions do not depend on reactant concentrations
 - C) The rate of a first-order reaction depends on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
 - D) A first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - E) None of the above are true.
- 30 10.0 grams of argon and 20.0 grams of neon are placed in a 1200.0 ml container at 25.0°C.

The partial pressure of neon is ______ atm.

- A) 20.4
- B) 8.70
- C) 0.700
- D) 3.40
- E) 5.60
- 31. The decomposition of N2O5 in solution in carbon tetrachloride proceeds via the reaction

 $2N_2O_5$ (soln) $\rightarrow 4NO_2$ (soln) + O_2 (soln)

The reaction is first order and has a rate constant of 4.82×10^{-3} s⁻¹ at 64°C. The rate law for

the reaction is rate = _____

A) k[N₂O₅]²

- B) $k \frac{[NO_2]^4 [O_2]}{[N_2O_5]^2}$ C) $k[N_2O_5]$ D) $k \frac{[N_2O_5]^2}{[NO_2]^4 [O_2]}$
- E) 2k[N₂O₅]

32.

Cycloheptane has ______ fewer hydrogens than n-hexane.

A) 0

B) 1

C) 2

D) 3

- E) 4
- 33. For which one of the following reactions is ΔH°_{TXT} equal to the heat of formation of the product?
 - A) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - B) $(1/2) N_2(g) + O_2(g) \rightarrow NO_2(g)$
 - C) $6C(s) + 6H(g) \rightarrow C_6H_6(I)$
 - D) $P(g) + 4H(g) + Br(g) \rightarrow PH_4Br(I)$
 - E) $2C(g) + 11H_2(g) + 11O(g) \rightarrow C_6H_{22}O_{11}(g)$

33. Of the following gases, ______ will have the greatest rate of effusion at a given temperature.

- A) NH3
- B) CH4
- C) Ar
- D) HBr
- E) HCI

34. In the energy profile of a reaction, the species that exists at the maximum on the curve is

called the _____

- A) product
- B) Activated complex
- C) Activation energy
- D) Enthalpy of reaction
- E) Atomic state
- 35. Alkenes have the general formula _____.
 - A) C_nH_{2n} .
 - B) $C_n H_{2n-2}$.
 - C) C_nH_{2n+2}
 - D) C_nH_n.
 - E) $C_{2n}H_n$.

- 36. Fuel values of hydrocarbons increase as the H/C atomic ratio increases. Which of the following compounds has the highest fuel value?
 - A) C₂H₆
 - B) C₂H₄
 - C) C₂H₂
 - D) CH₄
 - E) C₆H₆
- 37. An ideal gas differs from a real gas in that the molecules of an ideal gas ______.
 - A) Have no attraction for one another
 - B) Have appreciable molecular volumes
 - C) Have a molecular weight of zero
 - D) Have no kinetic energy
 - E) Have an average molecular mass
- 38. Of the following, ______ will lower the activation energy for a reaction.
 - A) Increasing the concentrations of reactants
 - B) Raising the temperature of the reaction
 - C) Adding a catalyst for the reaction
 - D) Removing products as the reaction proceeds
 - E) Increasing the pressure
- 39. Which of the following statements about gases is <u>false</u>?
 - A) Gases are highly compressible.
 - B) Distances between molecules of gas are very large compared to bond distances within molecules.
 - C) Non-reacting gas mixtures are homogeneous.
 - D) Gases expand spontaneously to fill the container they are placed in.
 - E) All gases are colourless and odourless at room temperature.
- 40. What is the name of the compound below?

$$\begin{array}{cccc} H & H \\ | & | \\ H_3C - C - C - C - C = CH_2 \\ | & | & | \\ H_3C & H & CH_3 \end{array}$$

- A) 2,4-methylbutene
- B) 2,5-dimethylpentane
- C) 2,4-ethylbutene
- D) 2,4-dimethyl-1-pentene
- E) 2,4-dimethyl-4-pentene

Section B

•

1

1

Quest	ion 1	
a)	What is the conjugate base of HClO ₄ , H ₂ S, PH ₄ ⁺ , HCO ₃ ⁻ ?	(2)
b)	What is the conjugate acid of CN^{-} , SO_4^{2-} , H_2O , HCO_3^{-} ?	(2)
c)	The hydrogen sulfite ion (HSO $_3$) is amphiprotic. Write an equation for the react	ion of
	HSO₃ [–] with water	(4)
	i) In which the ion acts as an acid and	
	ii) In which the ion acts as a base.	
	(In both cases identify the conjugate acid-base pairs)	
d)	Calculate the concentration of $OH^{-}(aq)$ in a solution in which	(4)
	i) $[H^*] = 2 \times 10^{-6} M;$	
	ii) $[H^*] = 100 \times [OH^-].$	
e)	A sample of freshly pressed apple juice has a pOH of 10.24. Calculate $[H^{+}]$.	(3)
f)	A 0.100 M solution of an unknown weak acid, HX, has a pH of 1.414. What is the	e K _a for
	HX?	(5)
Questi	<u>on 2</u>	
a)	Is a C_4H_6 a saturated hydrocarbon or not? Explain your answer.	(1)
b)	Write the condensed structural formula for 3-ethyl-2-methylpentane.	(1)
c)	Draw all the structural and geometric isomers of pentene, C_5H_{10} , that have an unbra	inched
	hydrocarbon chain.	(3)
d)	Indicate whether each of the following molecules is capable of geometrical (cis-tran	s)
	isomerism. For those that are, draw the structures:	(8)
	i) 1,1-dichloro-1-butene	
	ii) 2,4-dichloro-2-pentyne	
	iii) 1-chloro-1-pentene iv) 4,5-dimethyl-2-pentyne	
e)	What is the difference between a substitution reaction and an addition reaction	(1)
f)	Identify the functional groups in each of the following compounds:	
	i) CH ₃ —CH ₂ —OH	(1)
	\frown	
	ii) o	(1)

g) Predict the product of the reaction of 6-ethyl-3-decene which HBr. (2)

(2)

(2)

Question 3

a) Recall that density is mass per volume. What happens to the density of a gas as (3)

- i) the gas is heated in a constant-volume container;
- ii) the gas is compressed at constant temperature;
- iii) Additional gas is added to a constant-volume container?

(Your answer should be increase, decrease or no change)

- b) Tennis balls are usually filled with either air or N_2 gas to a pressure above atmospheric pressure to increase their bounce. If a tennis ball has a volume of 144 cm³ and contains 0.33 g of N_2 gas, what is the pressure inside the ball at 24 °C? (4)
- c) The pressure in a natural-gas tank is maintained at 2.20 atm. On a day when the temperature is -15 °C, the volume of gas in the tank is 3.25×10^3 m³. What is the volume of the same quantity of gas on a day when the temperature is 31 °C? (5)
- A 0.50-mol sample of oxygen gas is confined at 0°C and 1.0 atm in a cylinder with a movable piston. The piston compresses the gas so that the final volume is half the initial volume and the final pressure is 2.2 atm. What is the final temperature of the gas in degrees Celsius? (3)
- e) In the first step in the industrial process for making nitric acid, ammonia reacts with oxygen in the presence of a suitable catalyst to form nitric oxide and water vapor:

 $4 \text{ NH}_{3}(g) + 5 \text{ O}_{2}(g) \rightarrow 4 \text{ NO}_{3}(g) + 6 \text{ H}_{2} \text{ O}_{3}(g)$

How many liters of $NH_{3(g)}$ at 850 °C and 5.00 atm are required to react with 1.00 mol of $O_2(g)$ in this reaction? (5)

Question 4

a) For the standard enthalpy of formation of a substance, ΔH°_{f} : (3)

i. Define and state its S.I. units

ii. Illustrate it with an example without giving its actual value

iii. What is its value for an element in its thermochemical standard state?

b) What does Hess's Law state?

c) Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, SiH₄ at 298 K: (4) SiH₄(g) + $2O_{2(g)}$ SiO_{2(g)} + $2H_2O_{(l)}$

		Substar	nce	SiH	4(g)	SiO	2(g)	2H ₂ O _(i)	
		ΔH° _f (KJ	/mol)	+34	1.0	-910).9	-285.8	
d)	From the f	following equ	ations	and their	corresp	onding s	tandard	enthalpy chang	es, calculate
	the ∆H° _{rxn} ,	for the follo	wing re	action at	298 K.				(5)
C _(s)	+	2H _{2(g)}				$CH_{4(g)}$			
Giv	en:							ΔH° (KI)
C(s)	+	O _{2(g)}		>	CO _{2(g)}			-393.5	
H ₂₍₈	_{s)} + ½	O _{2(g)}		>	H ₂ O _(I)			-285.8	
CO	2(g) +	2H ₂ O _(I)			$CH_{4(g)}$	+	2O _{2(g)}	+890.3	
e)	Given the	following rea	ction:						
2Ba) (s)	+	O _{2(g)}			2BaO _(s)		ΔH° = -1107.0	ĸJ
Ηον	w many KJ (of heat are re	leased	when:				•.	
	i. 4.	62 g of BaO _(s)	is prod	uced					(3)

ii. 13.94 g of Ba_(s) reacts completely with oxygen to form BaO(s)? (3)

1

.

- 9 9 °

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 104 C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10-2 dm3 atm K-1 mol
	•	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	NA	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	:	
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m,	1.672 62 X 10 ⁻²⁷ Kg
neutron	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	~	$4\pi \times 10^{-7} T^2 J^4 m^3$ -
Magneton		_
Bohr	$\mu_{\rm B} = c \hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = {\rm ell}/{2m_{\rm n}}$	5.050 79 X 10 ²⁷ J T ⁻¹
g value	Se.	2.002 32
Bohr radius	$a_{a} = 4\pi \varepsilon_{a} N/m_{e}^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_c e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e}^{4}/8h^{3}ce^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		-
of free fall -	g -	9.806 65 m s ⁻¹ -
Gravitational constant	Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻¹
		-

Conversion factors

1 cal =	4.184 joul <u>e</u> s (J)			1 erg				1 X 10 ⁻⁷ J		
1 eV =	1.602 2 X 10 ⁻¹⁹ J			1 eV/molecule				96 485 kJ mol ⁻¹		
Prefixes	f	p	n	μ	m	c	d	k	M	G ⁻
	femto	pico	nano	micro	milli	centi	d eci	kilo	mega	gi g a
	10 ⁻¹⁵	10 ⁻¹²	10*	10 ⁻⁶	10 ⁻³	10 ⁻¹	10 ⁻¹	10 ³	10 ⁶	10°

GROUPS Ī0 12 Ī4 15 16 17 18 8 9 11 13 2 3 4 5 6 7 VIIA VIIIA PERIODS IA IIA IIIB IVB VB VIB VIIB VIIIB IB 11B IIIA **JVA** VA VIA 4.003 1,008 He 11 1 2 1 18.998 6.941 9.012 Atomic mass - 10.811 12.011 14.007 15.999 20.180 С F -Ne Li Be Symbol N 0 2 Atomic No. 6 8 9 10 3 4 7 26.982 28.086 30.974 32.06 35.453 39.948 22.990 24:305 Na Mg AI Si Ρ S £1 Ar 3 TRANSITION ELEMENTS 12 13 15 16 17 18 11 14 39.098 40.078 44.956 47.88 50.942 51.996 54.938 55.847 58.933 58.69 63.546 65.39 . 69.723 72.61 74,922 78.96 79.904 83.80 к Ca Sc Ti V Cr Мп Fe Co Ni Cu Zn Ga Ge Ås Se Вг Кг 4 19 20 21 22 23 24 27 29 30 32 33 34 36 25 26 28 31 35 85.468 87.62 88.906 91.224 92.906 95.94 98.907 101:07 102.94 106.42 107.87 112.41 114.82 118.71 121.75 127.60 126.90 131.29 Xe 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Åg Cđ ln Sn ŞÞ, Te 1 37 38 39 47 52 53 54 40 41 42 43 44 45 46 48 49 50 SL 132.91 137.33 138.91 178.49 180.95 183.85 186.21 190.2 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) Cs Ba *La Hf Та W Re Os lr Pt РЬ Rn Hg ΤI Bi Po At 6 Au 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 223 226.03 (227) (262) (263) (261) (262) (265) (266) (267) Fr Ra **Ac Rf Uns Ha Unh Uno Une 7 Uun 87 88 89 104 105 106 107 108 109 110 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97

PERIODIC TABLE OF ELEMENTS

*Lanthanide Series	Ce	Pr	Nd
	58	59	60
**Actinide Series	232.04	231.04	238.03

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
ТЬ	Pa	U	Np	Pu ·	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	J03

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

C112 SECTION A ANSWER SHEET

STUDENT ID NUMBER:

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1.	(A)	(B)	(C)	(D)	(E)		21.	(A)	(B)	(C)	(D)	(E)
2	(A)	(B)	(C)	(D)	(E)		22	(A)	(B)	(C)	(D)	(E)
3	(A)	(B)	(C)	(D)	(E)		23	(A)	(B)	(C)	(D)	(E)
4	(A)	(B)	(C)	(D)	(E)		24	(A)	(B)	(C)	(D)	(E)
5	(A)	(B)	(C)	(D)	(E)		25	(A)	(B)	(C)	(D)	(E)
6	(A)	(B)	(C)	(D)	(E)		26	(A)	(B)	(C)	(D)	(E)
7	(A)	(B)	(C)	(D)	(E)		27	(A)	(B)	(C)	(D)	(E)
8	(A)	(B)	(C)	(D)	(E)		28	(A)	(B)	(C)	(D)	(E)
9	(A)	(B)	(C)	(D)	(E)	4	29	(A)	(B)	(C)	(D)	(E)
10	(A)	(B)	(C)	(D)	(E)		30	(A)	(B)	(C)	(D)	(E)
11	(A)	(B)	(C)	(D)	(E)	-	31	(A)	(B)	(C)	(D)	(E)
12	(A)	(B)	(C)	(D)	(E)	1	32	(A)	(B)	(C)	(D)	(E)
13	(A)	(B)	(C)	(D)	(E)		33	(A)	(B)	(C)	(D)	(E)
14	(A)	(B)	(C)	(D)	(E)		34	(A)	(B)	(C)	(D)	(E)
15	(A)	(B)	(C)	(D)	(E)		35	(A)	(B)	(C)	(D)	(E)
16	(A)	(B)	(C)	(D)	(E)		36	(A)	(B)	(C)	(D)	(E)
17	(A)	(B)	(C)	(D)	(E)		37	(A)	(B)	(C)	(D)	(E)
18	(A)	(B)	(C)	(D)	(E)		38	(A)	(B)	(C)	(D)	(E)
19	(A)	(B)	(C)	(D)	(E)		39	(A)	(B)	(C)	(D)	(E)
20	(A)	(B)	(C)	(D)	(E)		40	(A)	(B)	(C)	(D)	(E)