UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION - 2013, MAY

TITLE OF PAPER : . Introductory Chemistry II

COURSE NUMBER : C112

TIME : Three Hours

INSTRUCTIONS

1. Answer all questions in Section A (Total 40 marks)
2. Answer any three questions in Section B (each question is 20 marks)

NB: Non-programmable electronic calculators may be used
A data sheet, a periodic table and answer sheet (for Section A) are attached

Useful data and equations:
$1 \mathrm{~atm}=760 \mathrm{Torr}=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
Arrhenius equation: $k=A e^{-E_{a} / R T} \quad$ or $\quad \ln k=\ln A-\frac{E_{a}}{R T}$

Van der Walls equation: $P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}$

This Examination Paper Contains Thirteen Printed Pages Including This Page

1. Which statement about hydrocarbons is false?
A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
B) Cyclic alkanes are structural isomers of alkenes.
C) Alkanes are more reactive than alkenes.
D) Alkanes can be produced by hydrogenating alkenes.
E) Alkenes can be polymerized.
2. At equilibrium, \qquad -.
A) All chemical reactions have ceased
B) The rates of the forward and reverse reactions are equal
C) The rate constants of the forward and reverse reactions are equal
D) The value of the equilibrium constant is 1
E) The limiting reagent has been consumed
3. Which one of the following is an endothermic process?
A) Ice melting
B) Water freezing
C) Boiling soup
D) Hydrochloric acid and barium hydroxide are mixed at $25^{\circ} \mathrm{C}$: the temperature increases.
E) Both A and C
4. Gaseous mixtures \qquad .
A) Can only contain molecules
B) Are all heterogeneous
C) Can only contain isolated atoms
D) Are all homogeneous
E) Must contain both isolated atoms and molecules
5. Which of the following expressions is the correct equilibrium-constant expression for the following reaction?

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

A) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]}$
B) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}$
c) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
D) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
E) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$
6. Of the units below, \qquad are appropriate for a first-order reaction rate constant.
A) $\mathrm{M} \mathrm{s}^{-1}$
B) s^{-1}
C) $\mathrm{mol} / \mathrm{L}$
D) $\quad M^{-1} s^{-1}$
E) $\quad \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
7. Which of the following compounds do not contain an sp^{3} hybridized oxygen atom?
A) Ketones
B) Alcohols
C) Ethers
D) Esters
E) Water
8. Which of the following is a statement of the first law of thermodynamics?
A) $\quad E_{k}=(1 / 2) m v^{2}$
B) A negative ΔH corresponds to an exothermic process.
C) $\Delta E=E_{\text {final }}-E_{\text {initial }}$
D) Energy lost by the system must be gained by the surroundings.
E) $1 \mathrm{cal}=4.184 \mathrm{~J}$ (exactly)
9. The rate law of a reaction is rate $=k[D][X]$. The units of the rate constant are \qquad -.
A) $\mathrm{molL}^{-1} \mathbf{S}^{-1}$
B) $\quad \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
C) $\mathrm{mol}^{2} \mathrm{~L}^{-2} \mathrm{~s}^{-1}$
D) $\mathrm{molL}^{-1} \mathrm{~s}^{-2}$
E) $\quad \mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
10. "Isothermal" means \qquad .
A) At constant pressure
B) At constant temperature
C) At variable temperature and pressure conditions
D) At ideal temperature and pressure conditions
E) \quad That $\Delta H_{\mathrm{rxn}}=0$
11. Which structure below represents an amine?
A)

B)

C)

D)

E)

12. The K_{eq} for the equilibrium below is 7.52×10^{-2} at $480.0^{\circ} \mathrm{C}$.

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

What is the value of $\mathrm{Keq}_{\mathrm{eq}}$ at this temperature for the following reaction?

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) 0.0752
B) $\quad-0.0752$
C) $\quad 13.3$
D) $\quad 5.66 \times 10^{-3}$
E) 0.150
13. Under what condition(s) is the enthalpy change of a process equal to the amount of heat transferred into or out of the system?
(a) Temperature is constant
(b) Pressure is constant
(c) Volume is constant
A) a only
B) b only
C) conly
D) a and b
E) band c
14. The rate law for a reaction is

$$
\text { rate }=k[\mathrm{~A}][\mathrm{B}]^{2}
$$

Which one of the following statements is false?
A) The reaction is first order in A.
B) The reaction is second order in B.
C) The reaction is second order overall.
D) k is the reaction rate constant
E) If $[B]$ is doubled, the reaction rate will increase by a factor of 4 .
15. Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

$$
\mathrm{CO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

A) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$
B) $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]$
C) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
D) $\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}-\right]$
E) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]$
16. Hydrocarbons containing carbon-carbon triple bonds are called \qquad .
A) Alkanes
B) Aromatic hydrocarbons
C) Alkynes
D) Alkenes
E) Olefins
17. Of the following, only \qquad is impossible for an ideal gas.
A) $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
B) $\quad V_{1} T_{1}=V_{2} T_{2}$
C) $\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}$
D) $\quad V_{2}=\frac{T_{2}}{T_{1}} V_{1}$
E) $\quad \frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}=0$
18. Of the following equilibria, only \qquad will shift to the left in response to a decrease in volume.
A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g})$
B) $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
E) $\quad 2 \mathrm{HI}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
19. The reaction

$$
\mathrm{CH}_{3}-\mathrm{N} \equiv \mathrm{C} \rightarrow \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{~N}
$$

is a first-order reaction. At $230.3^{\circ} \mathrm{C}, \mathrm{k}=6.29 \times 10^{-4} \mathrm{~s}^{-1}$. If $\left[\mathrm{CH}_{3}-\mathrm{N} \equiv \mathrm{C}\right]$ is 1.00×10^{-3} initially,
[$\left.\mathrm{CH}_{3}-\mathrm{N}=\mathrm{C}\right]$ is \qquad after $1.000 \times 10^{3} \mathrm{~s}$.
A) $\quad 5.33 \times 10^{-4}$
B) $\quad 2.34 \times 10^{-4}$
C) 1.88×10^{-3}
D) 4.27×10^{-3}
E) $\quad 1.00 \times 10^{-6}$
20. In which of the following reactions would increasing pressure at constant temperature not change the concentrations of reactants and products, based on Le Châtelier's principle?
A) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B) $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
C) $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
D) $\quad 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
E) $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})$
21. The general formula of an alkane is \qquad .
A) $\mathrm{C}_{2 n} \mathrm{H}_{2 n+2}$
B) $\quad \mathrm{C}_{n} \mathrm{H}_{2 n}$
C) $\quad \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
D) $\quad \mathrm{C}_{n} \mathrm{H}_{2 n-2}$
E) $\mathrm{C}_{n} \mathrm{H}_{n}$
22. Which of the following is a statement of Hess's law?
A) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
B) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the product of the enthalpy changes for the individual steps.
C) The ΔH for a process in the forward direction is equal in magnitude and opposite in sign to the ΔH for the process in the reverse direction.
D) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.
E) The ΔH of a reaction depends on the physical states of the reactants and products.

The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is first order in $[\mathrm{A}]$. Consider the following data.

time (s)	$[\mathrm{A}](\mathrm{M})$
0.0	1.60
10.0	0.40
20.0	0.10

23. The rate constant for this reaction is \qquad s^{-1}
A) 0.013
B) 0.030
C) $\quad 0.14$
D) 3.0
E) $\quad 3.1 \times 10^{-3}$
24. Sodium bicarbonate is reacted with concentrated hydrochloric acid at $37.0^{\circ} \mathrm{C}$ and 1.00 atm . The reaction of 6.00 kg of bicarbonate with excess hydrochloric acid under these conditions will produce \qquad Lof CO_{2}.
A) $\quad 1.09 \times 10^{2}$
B) $\quad 2.85 \times 10^{4}$
C) $\quad 1.82 \times 10^{4}$
D) $\quad 8.70 \times 10^{2}$
E) $\quad 1.82 \times 10^{3}$
25. Consider the following two reactions:

$$
\begin{array}{ll}
\mathrm{A} \rightarrow 2 \mathrm{~B} & \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=456.7 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~A} \rightarrow \mathrm{C} & \Delta \mathrm{H}^{\circ}{ }^{\circ} \mathrm{xn}=-22.1 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Determine the enthalpy change for the process:

$$
2 B \rightarrow C
$$

A) $\quad-478.8 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-434.6 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 434.6 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 478.8 \mathrm{~kJ} / \mathrm{mol}$
E) More information is needed to solve the problem.
26. As the temperature of a reaction is increased, the rate of the reaction increases because the
\qquad _.
A) Reactant molecules collide less frequently
B) Reactant molecules collide more frequently and with greater energy per collision
C) Activation energy is lowered
D) Reactant molecules collide less frequently and with greater energy per collision
E) Reactant molecules collide more frequently with less energy per collision
27. The kinetic-molecular theory predicts that pressure rises as the temperature of a gas increases because \qquad .
A) The average kinetic energy of the gas molecules decreases
B) The gas molecules collide more frequently with the wall
C) The gas molecules collide less frequently with the wall
D) The gas molecules collide more energetically with the wall
E) Both the gas molecules collide more frequently with the wall and the gas molecules collide more energetically with the wall
28. Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

A) x
B) y
C) $x+y$
D) $x-y$
E) $y-x$
29. Which one of the following gases would have the highest average molecular speed at $25^{\circ} \mathrm{C}$?
A) O_{2}
B) $\quad \mathrm{N}_{2}$
C) $\quad \mathrm{CO}_{2}$
D) $\quad \mathrm{CH}_{4}$
E) $\quad \mathrm{SF}_{6}$
30. A real gas will behave most like an ideal gas under conditions of \qquad .
A) High temperature and high pressure
B) High temperature and low pressure
C) Low temperature and high pressure
D) Low temperature and low pressure
E) STP
31. The mechanism for formation of the product X is:

$$
\begin{aligned}
& A+B \rightarrow C+D \quad \text { (slow) } \\
& B+D \rightarrow X \quad \text { (fast) }
\end{aligned}
$$

The intermediate reactant in the reaction is \qquad .
A) A
B) $\quad \mathrm{B}$
C) C
D) D
E) X
32. The rate law of the overall reaction
$A+B \rightarrow C$
is rate $=k[A]^{2}$. Which of the following will not increase the rate of the reaction?
A) Increasing the concentration of reactant A
B) Increasing the concentration of reactant B
C) Increasing the temperature of the reaction
D) Adding a catalyst for the reaction
E) All of these will increase the rate.
33. The reaction

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}=-3351 \mathrm{~kJ}
$$

is \qquad and therefore heat is \qquad by the reaction.
A) Endothermic, released
B) Endothermic, absorbed
C) Exothermic, released
D) Exothermic, absorbed
E) thermoneutral, neither released nor absorbed
34. In the reaction below, $\Delta H_{f}{ }^{\circ}$ is zero for \qquad .

$$
\mathrm{Ni}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{PF}_{3}(\mathrm{~g}) \rightarrow \mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PF}_{3}\right)_{2}(\mathrm{l})
$$

A) $\quad \mathrm{Ni}(\mathrm{s})$
B) $\quad \mathrm{CO}(\mathrm{g})$
C) $\quad \mathrm{PF}_{3}(\mathrm{~g})$
D) $\quad \mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PF}_{3}\right)_{2}$ (I)
E) \quad Both $\mathrm{CO}(\mathrm{g})$ and $\mathrm{PF}_{3}(\mathrm{~g})$
35. Which one of the following is not an alcohol?
A) Acetone
B) Glycerol
C) Ethanol
D) Cholesterol
E) Ethylene glycol
36. Gaseous mixtures \qquad .
A) Can only contain molecules
B) Are all heterogeneous
C) Can only contain isolated atoms
D) Are all homogeneous
E) Must contain both isolated atoms and molecules
37. Which one of the following is a valid statement of Avogadro's law?
A) $\quad V a 1 / P$
B) $\quad V a T$
C) $\quad V \alpha R$
D) $\quad V a n$
E) None of the above
38. Which statement about addition reactions between alkenes and HBr is false?
A) The addition occurs at the double bond.
B) Bromine attacks the alkene carbon atom possessing a partial positive charge.
C) A hydrogen atom attaches to the alkene carbon atom possessing a partial negative charge.
D) The π bond breaks in the course of the reaction.
E) The proposed mechanism involves radicals.
39. The molecular geometry of each carbon atom in an alkane is \qquad .
A) Octahedral
B) Square planar
C) Trigonal planar
D) Tetrahedral
E) Trigonal pyramidal
40. 5. $\quad \mathrm{A} 0.007500 \mathrm{~m}^{3}$ volume of carbon dioxide was collected at $45.15^{\circ} \mathrm{C}$ and 121.59 kPa . The volume was then decreased by 75.00% while the temperature was halved. The new pressure in the container was:
A. $\quad 0.1150$ bar
B. $\quad 243.2 \mathrm{kPa}$
C. $\quad 1130 \mathrm{mmHg}$
D. $\quad 4.560 \mathrm{~atm}$
E. None of the above

Section B

Question 1

a) A solution is made by mixing 17.3 mL of 0.25 M HCl and 15.0 mL of 0.33 M NaOH . Calculate the pH of this solution.
b) The data obtained during the reaction between aqueous hydrochloric acid and aqueous sodium thiosulphate to precipitate sulphur are tabulated below:

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	25	35	45	55	65
$\mathrm{t}(\mathrm{s})$	25.3	17.9	12.5	9.0	6.0
$\mathrm{~K}\left(\mathrm{~s}^{-1}\right)$	0.040	0.056	0.080	0.111	0.152

i. Using the Arrhenius plot, evaluate the activation energy, Ea, for this reaction. (10)
ii. Calculate the ' A ' factor for this reaction at $25^{\circ} \mathrm{C}$.
iii. If the precipitation of sulphur follows a first order rate law, estimate its half life at temperature of $45^{\circ} \mathrm{C}$.

Question 2

a) (i) Name any six classes of organic compounds.
(ii) Give the functional group and a named example for each of the classes of compounds named in part (i) above.
b) Write the structural formulas for all the constitutional isomers that have the following molecular formula.
i. $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$
ii. $\quad \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
iii. $\quad \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
c) Expand the following bond line representations to show all the atoms including all the carbons and hydrogens.
i.

ii.

Question 3

a) Nitrous oxide can be formed by thermal decomposition of ammonium nitrate.
$\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
What mass of ammonium nitrate would be required to produce 115 L of $\mathrm{N}_{2} \mathrm{O}$ at 2800 Torr and $42^{\circ} \mathrm{C}$
b) (i) State Dalton's law of partial pressures.
(ii) At $25^{\circ} \mathrm{C}, 0.300$ moles of $\mathrm{CH}_{4(\mathrm{~g})}, 0.200$ mole of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.400 mole of $\mathrm{N}_{2(\mathrm{~g})}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask.
(iii) Suppose the temperature of the flask above is raised from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, evaluate the ratio of the total pressures in the flask at the two temperatures.
(iv) Calculate the volume of 0.65 mole of an ideal gas at 499 Torr and $102^{\circ} \mathrm{C}$
(NB : use $\mathrm{R}=0.0821$ L.atm.mol ${ }^{-1} \mathrm{~K}^{-1}$)
c) Tennis balls are usually filled with either air or N_{2} gas to a pressure above atmospheric pressure to increase their bounce. If a tennis ball has a volume of $144 \mathrm{~cm}^{3}$ and contains 0.33 g of N_{2} gas, what is the pressure inside the ball at $24^{\circ} \mathrm{C}$?

Question 4

a) For the reaction:

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

$K_{p}=794$ at 298 K and $K_{p}=55$ at 700 K . Is the formation of HI favored more at the higher or lower temperature?
b) Write the following equilibrium-constant expressions:
i. $\quad K_{c}$ for $\mathrm{Cr}(s)+3 \mathrm{Ag}^{+}(a q) \rightleftharpoons \mathrm{Cr}^{3+}(a q)+3 \mathrm{Ag}(s)$
ii. $\quad K_{p}$ for $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(g)$
c) Sulfur trioxide decomposes at high temperature in a sealed container:

$$
2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)
$$

Initially, the vessel is charged at $1000 \mathrm{~K}^{\text {with }} \mathrm{SO}_{3}(\mathrm{~g})$ at a partial pressure of 0.500 atm . At equilibrium the SO_{3} partial pressure is 0.200 atm . Calculate the value of K_{p} at 1000 K .
d) For the reaction

$$
\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \quad \Delta H^{\circ}=87.9 \mathrm{~kJ}
$$

in which direction will the equilibrium shift when
i. $\quad \mathrm{Cl}_{2}(g)$ is removed,
ii. the temperature is decreased,
iii. the volume of the reaction system is increased,
iv. $\quad \mathrm{PCl}_{3}(g)$ is added?

General data and fundamental constants

Quantity	Symbol	Yalue
Speed of light	c	$2.99792458 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\boldsymbol{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boitzmann constant	k	$1.38066 \times 10^{-33} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.314 \mathrm{Si} \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{2} \mathrm{dm}^{3} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L} \mathrm{Torr} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\mathrm{h}=\mathrm{h} / 2 \mathrm{~m}$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{\wedge}	$6.02214 \times 10^{32} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {, }}$	$9.10939 \times 10^{-11} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuam permitivity	$\varepsilon_{o}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon$ 。	$1.11265 \times 10^{-20} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$\begin{aligned} & 4 \pi \times 1 \sigma^{7} \mathrm{Js}^{2} \mathrm{C}^{-7} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~S}^{-1} \mathrm{~m}^{3} \end{aligned}$
Magneton		
Bohr	$\mu_{B}=e^{*} / 1 / 2 m_{8}$	$9.27402 \times 10^{-24} \mathrm{JT}^{-1}$
nuclear	$\mu_{N}=e^{\prime} / / 2 m^{\prime}$	$5.05079 \times 10^{-71} \mathrm{~J} \mathrm{~T}^{\prime}$
g value	ge	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \mathrm{~h} / \mathrm{m}_{6} \mathrm{c}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / / h$	$=7.29735 \times 10^{4}$
Rydberg constant	$\mathrm{R}_{\mathrm{n}}=\mathrm{m}_{0} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{c}_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms}^{2}$
Gravitational constant	G	$6.67259 \times 10^{11} \mathrm{Nm}^{2} \mathrm{Xg}^{-2}$

Conversion factors

$1 \mathrm{cs}=$	4.184 joules (9)	1 erg
$1 \mathrm{eV}=$	$=1 \times 10^{-7} \mathrm{~J}$	
	$=1 \mathrm{eV} /$ molecule $2 \times 10^{-19} \mathrm{~J}$	$=96485 \mathrm{ky} \mathrm{mol}^{-1}$

 ferto pico pano micro milli centi deci kilo mega giga $\begin{array}{llllllllll}10^{-15} & 10^{-12} & 10^{-9} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-4} & 10^{3} & 10^{6} & 10^{9}\end{array}$

PERIODIC TABLE OF ELEMENTS

*Lanthanide Scrics	$\begin{gathered} 140.12 \\ \mathrm{Ce} \\ 58 \end{gathered}$	$\begin{gathered} 140.91 \\ \mathrm{Pr} \\ 59 \end{gathered}$	$\begin{gathered} 144.24 \\ \mathrm{Nu} \\ 60 \end{gathered}$	$\begin{gathered} (145) \\ \operatorname{Pm} \\ 61 \end{gathered}$	$\begin{gathered} \hline 150.36 \\ \mathrm{Sm} \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 151.96 \\ \mathrm{Eu} \\ 63 \end{gathered}$	157.25 Gd 64	$\begin{gathered} 158.93 \\ \mathrm{~Tb} \\ 65 \end{gathered}$	$\begin{gathered} 162.50 \\ \mathrm{Dy}_{\mathrm{y}} \\ 66 \end{gathered}$	$\begin{gathered} 164.93 \\ . \mathrm{Ho} \\ \therefore .67 \\ \hline \end{gathered}$	$\begin{gathered} 167.26 \\ \mathrm{Er} \\ 68 \end{gathered}$	$\begin{gathered} 168.93 \\ \mathrm{Tm} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ Y b \\ 70 \end{gathered}$	$\begin{gathered} 174.97 \\ \mathrm{Lu} \\ 71 \\ \hline \end{gathered}$
**Aclinide Scries	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
- .	Th	P	U	Np	Pu	A.m	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	90	91	92	93	94	95	96	97	98	99	100	101	102	105

() indicates the mass number of the isotope wilh the longest half-life.

UNIVERSITY OF SWAZILAND

Cl11 SECTION A ANSWER SHEET

STUDENT ID NUMBER:
Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

| 1. | (A) | (B) | (C) | (D) | (E) | | 21. | (A) | (B) | (C) | (D) | (E) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | (A) | (B) | (C) | (D) | (E) | | 22 | (A) | (B) | (C) | (D) | (E) |
| 3 | (A) | (B) | (C) | (D) | (E) | | 23 | (A) | (B) | (C) | (D) | (E) |
| 4 | (A) | (B) | (C) | (D) | (E) | | 24 | (A) | (B) | (C) | (D) | (E) |
| 5 | (A) | (B) | (C) | (D) | (E) | | 25 | (A) | (B) | (C) | (D) | (E) |
| 6 | (A) | (B) | (C) | (D) | (E) | | 26 | (A) | (B) | (C) | (D) | (E) |
| 7 | (A) | (B) | (C) | (D) | (E) | | 27 | (A) | (B) | (C) | (D) | (E) |
| 8 | (A) | (B) | (C) | (D) | (E) | | 28 | (A) | (B) | (C) | (D) | (E) |
| 9 | (A) | (B) | (C) | (D) | (E) | | 29 | (A) | (B) | (C) | (D) | (E) |
| 10 | (A) | (B) | (C) | (D) | (E) | | 30 | (A) | (B) | (C) | (D) | (E) |
| 11 | (A) | (B) | (C) | (D) | (E) | | -31 | (A) | (B) | (C) | (D) | (E) |
| 12 | (A) | (B) | (C) | (D) | (E) | | 32 | (A) | (B) | (C) | (D) | (E) |
| 13 | (A) | (B) | (C) | (D) | (E) | | 33 | (A) | (B) | (C) | (D) | (E) |
| 14 | (A) | (B) | (C) | (D) | (E) | | 34 | (A) | (B) | (C) | (D) | (E) |
| 15 | (A) | (B) | (C) | (D) | (E) | | 35 | (A) | (B) | (C) | (D) | (E) |
| 16 | (A) | (B) | (C) | (D) | (E) | | 36 | (A) | (B) | (C) | (D) | (E) |
| 17 | (A) | (B) | (C) | (D) | (E) | | 37 | (A) | (B) | (C) | (D) | (E) |
| 18 | (A) | (B) | (C) | (D) | (E) | | 38 | (A) | (B) | (C) | (D) | (E) |
| 19 | (A) | (B) | (C) | (D) | (E) | | 39 | (A) | (B) | (C) | (D) | (E) |
| 20 | (A) | (B) | (C) | (D) | (E) | | 40 | (A) | (B) | (C) | (D) | (E) |

