UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION - 2013, MAY

TITLE OF P/	APER : Introductory Chemistry II
COURSE NU	UMBER : C112
TIME	: Three Hours
INSTRUCTI	ONS :
	1. Answer all questions in Section A (Total 40 marks)
	2. Answer any three questions in Section B (each question is 20
	marks)
NB:	Non-programmable electronic calculators may be used
	A data sheet, a periodic table and answer sheet (for Section A) are
	attached
Usefi	al data and equations: 1 atm = 760 Torr = 760 mmHg
	1 atm = 101325 Pa
	Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$
	Van der Walls equation: $P = \frac{nRT}{V-nb} - \frac{n^2a}{V^2}$

This Examination Paper Contains Thirteen Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

- 1. Which statement about hydrocarbons is <u>false</u>?
 - A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
 - B) Cyclic alkanes are structural isomers of alkenes.
 - C) Alkanes are more reactive than alkenes.
 - D) Alkanes can be produced by hydrogenating alkenes.
 - E) Alkenes can be polymerized.
- 2. At equilibrium, _____
 - A) All chemical reactions have ceased
 - B) The rates of the forward and reverse reactions are equal
 - C) The rate constants of the forward and reverse reactions are equal
 - D) The value of the equilibrium constant is 1
 - E) The limiting reagent has been consumed
- 3. Which one of the following is an endothermic process?
 - A) Ice melting
 - B) Water freezing
 - C) Boiling soup
 - D) Hydrochloric acid and barium hydroxide are mixed at 25 °C: the temperature increases.
 - E) Both A and C
- 4. Gaseous mixtures ____

5.

- A) Can only contain molecules
- B) Are all heterogeneous
- C) Can only contain isolated atoms
- D) Are all homogeneous
- E) Must contain both isolated atoms and molecules
- Which of the following expressions is the correct equilibrium-constant expression for the following reaction?
 - CO₂ (g) + 2H₂ (g) → CH₃OH (g)
 - A) $\frac{[CH_3OH]}{[CO_2]}$
 - $\mathbf{B} \qquad \frac{[\mathrm{CH}_{3}\mathrm{OH}]}{[\mathrm{CO}_{2}][\mathrm{H}_{2}]}$
 - $C) \qquad \frac{[CO_2][H_2]^2}{[CH_3OH]}$
 - [CH₃OH]
 - D) $\frac{[CO_2][H_2]}{[CH_3OH]}$

E)
$$\frac{[CH_3OH]}{[CO_2][H_2]^2}$$

- 6. Of the units below, ______ are appropriate for a first-order reaction rate constant.
 - A) M s⁻¹
 - B) s-1
 - C) mol/L
 - D) M⁻¹ s⁻¹
 - E) L mol-1 s-1
- 7. Which of the following compounds do <u>not</u> contain an sp³ hybridized oxygen atom?
 - A) Ketones and the second second

- B) Alcohols
- C) Ethers
- D) Esters
- E) Water

8. Which of the following is a statement of the first law of thermodynamics?

- A) $E_k = (1/2) mv^2$
- B) A negative ΔH corresponds to an exothermic process.
- C) $\Delta E = E_{\text{final}} E_{\text{initial}}$
- D) Energy lost by the system must be gained by the surroundings.
- E) 1 cal = 4.184 J (exactly)

The rate law of a reaction is rate = k[D][X]. The units of the rate constant are _____

- A) $mol L^{-1}s^{-1}$
- B) $L \mod^{-1} s^{-1}$
- C) $mol^2 L^{-2}s^{-1}$
- D) mol $L^{-1}s^{-2}$

E) $L^2 \text{ mol} - 2s^{-1}$

- 10. "Isothermal" means _____
 - A) At constant pressure
 - B) At constant temperature
 - C) At variable temperature and pressure conditions
 - D) At ideal temperature and pressure conditions

CH₃CH₂ --- O --- CH₂CH₃ B)

E) That
$$\Delta H_{rxn} = 0$$

11. Which structure below represents an amine?

A)

D)

9.

C)

12.

The Keq for the equilibrium below is 7.52×10^{-2} at 480.0° C.

2Cl₂ (g) + 2H₂O (g) → 4HCl (g) + O₂ (g)

What is the value of Keg at this temperature for the following reaction?

E)

 $4HCl (g) + O_2 (g) \longrightarrow 2Cl_2 (g) + 2H_2O (g)$

- A) 0.0752
- B) -0.0752
- C) 13.3
- D) 5.66 × 10⁻³
- E) 0.150

13. Under what condition(s) is the enthalpy change of a process equal to the amount of heat transferred into or out of the system?

- (a) Temperature is constant
- (b) Pressure is constant
- (c) Volume is constant
- A) a only
- B) b only
- C) c only
- D) a and b

E) b and c

14. The rate law for a reaction is

rate = $k [A][B]^2$

Which one of the following statements is false?

A) The reaction is first order in A.

- B) The reaction is second order in B.
- C) The reaction is second order overall.
- D) k is the reaction rate constant
- E) If [B] is doubled, the reaction rate will increase by a factor of 4.
- 15. Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

CO₂ (s) + H₂O (l) → H⁺ (aq) + HCO₃⁻ (aq)

- A) [H+][HCO₃-]/[CO₂]
- B) [CO₂] / [H⁺][HCO₃⁻]
- C) [H+][HCO₃-]/[CO₂][H₂O]
- D) [CO₂][H₂O] / [H⁺][HCO₃⁻]
- E) [H⁺][HCO₃⁻]

16. Hydrocarbons containing carbon-carbon triple bonds are called ______.

- A) Alkanes
- B) Aromatic hydrocarbons
- C) Alkynes
- D) Alkenes
- E) Olefins

17. Of the following, only ______ is impossible for an ideal gas.

- A) $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
- B) $V_1T_1 = V_2T_2$
- C) $\frac{V_1}{V_2} = \frac{T_1}{T_2}$
- $\mathbf{D} \qquad \mathbf{V}_2 = \frac{\mathbf{T}_2}{\mathbf{T}_1} \mathbf{V}_1$
- E) $\frac{V_1}{V_2} = \frac{T_1}{T_2} = 0$
- 18. Of the following equilibria, only ______ will shift to the left in response to a decrease in volume.
 - A) $H_2(g) + Cl_2(g) \longrightarrow 2 HCl(g)$
 - B) $2 SO_3(g) \longrightarrow 2 SO_2(g) + O_2(g)$
 - C) $N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$
 - D) 4 Fe (s) + 3 O₂ (g) ---- 2 Fe₂O₃ (s)
 - E) $2HI(g) \longrightarrow H_2(g) + I_2(g)$

19. The reaction

 $CH_3-N\equiv C \rightarrow CH_3-C\equiv N$

is a first-order reaction. At 230.3 °C, k = 6.29×10^{-4} s⁻¹. If [CH₃-N=C] is 1.00×10^{-3} initially,

 $[CH_3-N\equiv C]$ is ______ after 1.000×10^3 s.

- A) 5.33 × 10⁻⁴
- B) 2.34×10^{-4}
- C) 1.88×10^{-3}
- D) 4.27×10^{-3}
- E) 1.00×10^{-6}
- 20. In which of the following reactions would increasing pressure at constant temperature <u>not</u> change the concentrations of reactants and products, based on Le Châtelier's principle?
 - A) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$
 - B) N₂O₄ (g) → 2NO₂ (g)
 - C) $N_2(g) + 2O_2(g) \longrightarrow 2NO_2(g)$
 - D) $2N_2(g) + O_2(g) \longrightarrow 2N_2O(g)$
 - E) $N_2(g) + O_2(g) \longrightarrow 2NO(g)$
- 21. The general formula of an alkane is ______.
 - A) $C_{2n}H_{2n+2}$
 - B) C_nH_{2n}
 - C) C_nH_{2n+2}
 - D) C_nH_{2n-2}
 - E) C_nH_n
- 22. Which of the following is a statement of Hess's law?
 - A) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
 - B) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the product of the enthalpy changes for the individual steps.
 - C) The ΔH for a process in the forward direction is equal in magnitude and opposite in sign to the ΔH for the process in the reverse direction.
 - D) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.
 - E) The ΔH of a reaction depends on the physical states of the reactants and products.

The reaction $A \rightarrow B$ is first order in [A]. Consider the following data.

time (s)	[A] (M)
0.0	1.60
10.0	0.40
20.0	0.10

23. The rate constant for this reaction is $_______ s^{-1}$.

- A) 0.013
- B) 0.030
- C) 0.14
- D) 3.0
- E) 3.1×10^{-3}
- 24. Sodium bicarbonate is reacted with concentrated hydrochloric acid at 37.0°C and 1.00 atm. The reaction of 6.00 kg of bicarbonate with excess hydrochloric acid under these conditions will produce ______ L of CO₂.

- A) 1.09×10^2
- B) 2.85 × 104
- C) 1.82 × 10⁴
- D) 8.70 × 10²
- E) 1.82 × 10³

25. Consider the following two reactions:

 $\Delta H^{\circ}_{rxn} = 456.7 \text{ kJ/mol}$

 $\Delta H^{\circ}_{rxn} = -22.1 kJ/mol$

Determine the enthalpy change for the process:

$$2B \rightarrow C$$

 $A \rightarrow 2B$

 $A \rightarrow C$

- A) -478.8 kJ/mol
- B) -434.6 kJ/mol
- C) 434.6 kJ/mol
- D) 478.8 kJ/mol
- E) More information is needed to solve the problem.
- 26. As the temperature of a reaction is increased, the rate of the reaction increases because the
 - A) Reactant molecules collide less frequently
 - B) Reactant molecules collide more frequently and with greater energy per collision
 - C) Activation energy is lowered
 - D) Reactant molecules collide less frequently and with greater energy per collision
 - E) Reactant molecules collide more frequently with less energy per collision
- 27. The kinetic-molecular theory predicts that pressure rises as the temperature of a gas increases because ______.
 - A) The average kinetic energy of the gas molecules decreases
 - B) The gas molecules collide more frequently with the wall
 - C) The gas molecules collide less frequently with the wall
 - D) The gas molecules collide more energetically with the wall
 - E) Both the gas molecules collide more frequently with the wall <u>and</u> the gas molecules collide more energetically with the wall
- 28. Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

Reaction pathway

- A) X
- B) y
- C) x + y
- D) x-y.
- E) y x

29. Which one of the following gases would have the <u>highest</u> average molecular speed at 25°C?

- A) O₂ B) N₂
- B) N₂
- C) CO₂
- D) CH₄ E) SF₆

- 30. A real gas will behave most like an ideal gas under conditions of ____
 - A) High temperature and high pressure
 - B) High temperature and low pressure
 - C) Low temperature and high pressure
 - D) Low temperature and low pressure
 - E) STP
- 31. The mechanism for formation of the product X is:
 - $A + B \rightarrow C + D$ (slow)
 - $B + D \rightarrow X$ (fast)

The intermediate reactant in the reaction is ______.

- A) A
- B) B
- C) C
- D) D
- E) X
- 32. The rate law of the overall reaction

$$A + B \rightarrow C$$

is rate = $k[A]^2$. Which of the following will <u>not</u> increase the rate of the reaction?

- A) Increasing the concentration of reactant A
- B) Increasing the concentration of reactant B
- C) Increasing the temperature of the reaction
- D) Adding a catalyst for the reaction
- E) All of these will increase the rate.
- 33. The reaction

is

4Al (s) +
$$3O_2$$
 (g) \rightarrow 2 Al₂O₃ (s) $\Delta H^\circ = -3351$ kJ

____, and therefore heat is ______ by the reaction.

- A) Endothermic, released
- B) Endothermic, absorbed
- C) Exothermic, released
- D) Exothermic, absorbed
- E) thermoneutral, neither released nor absorbed
- 34. In the reaction below, ΔH_{f}° is zero for _____

Ni (s) + 2CO (g) + 2PF₃ (g)
$$\rightarrow$$
 Ni(CO)₂ (PF₃)₂ (l)

- A) Ni (s)
- B) CO (g)
- C) PF₃ (g)
- D) Ni(CO)₂(PF₃)₂ (I)
- E) Both CO (g) and PF₃ (g)
- 35. Which one of the following is <u>not</u> an alcohol?
 - A) Acetone
 - B) Glycerol
 - C) Ethanol
 - D) Cholesterol
 - E) Ethylene glycol
- 36. Gaseous mixtures _____
 - A) Can only contain molecules
 - B) Are all heterogeneous
 - C) Can only contain isolated atoms
 - D) Are all homogeneous
 - E) Must contain both isolated atoms and molecules

- 37. Which one of the following is a valid statement of Avogadro's law?
 - A) $V \alpha 1/P$
 - Β) VαT
 - C) VαR
 - D) Van
 - E) None of the above
- 38. Which statement about addition reactions between alkenes and HBr is <u>false</u>?
 - A) The addition occurs at the double bond.
 - B) Bromine attacks the alkene carbon atom possessing a partial positive charge.
 - C) A hydrogen atom attaches to the alkene carbon atom possessing a partial negative charge.

es pro

- D) The π bond breaks in the course of the reaction.
- E) The proposed mechanism involves radicals.
- 39. The molecular geometry of each carbon atom in an alkane is ______.
 - A) Octahedral
 - B) Square planar
 - C) Trigonal planar
 - D) Tetrahedral
 - E) Trigonal pyramidal
- 40. 5. A 0.007500 m³ volume of carbon dioxide was collected at 45.15°C and 121.59 kPa. The volume was then decreased by 75.00% while the temperature was halved. The new pressure in the container was:
 - A. 0.1150 bar
 - B. 243.2 kPa
 - C. 1130 mmHg
 - D. 4.560 atm
 - E. <u>None of the above</u>

Section B

Question 1

- a) A solution is made by mixing 17.3 mL of 0.25 M HCl and 15.0 mL of 0.33 M NaOH. Calculate the pH of this solution. (4)
- b) The data obtained during the reaction between aqueous hydrochloric acid and aqueous sodium thiosulphate to precipitate sulphur are tabulated below:

T(℃)	25	35	45	55	65
t(s)	25.3	17.9	12.5	9.0	6.0
K(s ⁻¹)	0.040	0.056	0.080	0.111	0.152

i. Using the Arrhenius plot, evaluate the activation energy, Ea, for this reaction. (10)

(3)

(1)

- ii. Calculate the 'A' factor for this reaction at 25°C.
- iii. If the precipitation of sulphur follows a first order rate law, estimate its half life at temperature of 45°C. (3)

Question 2

- a) (i) Name any six classes of organic compounds. (3) (ii) Give the functional group and a named example for each of the classes of compounds named in part (i) above. (6)
 - b) Write the structural formulas for all the constitutional isomers that have the following molecular formula. (7)
 - i. C₂H₇N
 - ii. C₃H₇Cl
 - iii. C₃H₈O
 - c) Expand the following bond line representations to show all the atoms including all the carbons and hydrogens.
 (4)

Question 3

a) Nitrous oxide can be formed by thermal decomposition of ammonium nitrate.

 $NH_4NO_{3(s)} \rightarrow N_2O_{(g)} + 2H_2O_{(g)}$

What mass of ammonium nitrate would be required to produce 115 L of N_2O at 2800 Torr and 42°C (3)

- b) (i) State Dalton's law of partial pressures.
 - (ii) At 25°C, 0.300 moles of $CH_{4(g)}$, 0.200 mole of $H_{2(g)}$ and 0.400 mole of $N_{2(g)}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask. (5)
 - (iii) Suppose the temperature of the flask above is raised from 25°C to 75°C, evaluate the ratio of the total pressures in the flask at the two temperatures. (3)
 - (iv) Calculate the volume of 0.65 mole of an ideal gas at 499 Torr and 102°C (3) (NB: use R = $0.0821 \text{ L.atm.mol}^{-1}\text{K}^{-1}$)

Tennis balls are usually filled with either air or N₂ gas to a pressure above atmospheric c) pressure to increase their bounce. If a tennis ball has a volume of 144 cm³ and contains 0.33 g of N₂ gas, what is the pressure inside the ball at 24 °C? (5)

Question 4

a) For the reaction:

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$

(4)

(5)

 K_p = 794 at 298 K and K_p = 55 at 700 K. Is the formation of HI favored more at the higher or lower temperature? (3)

b) Write the following equilibrium-constant expressions:

 K_c for Cr(s) + 3 Ag⁺(aq) \implies Cr³⁺(aq) + 3 Ag(s) K_p for 3 Fe(s) + 4 H₂O(g) \implies Fe₃O₄(s) + 4 H₂(g) i.

c) Sulfur trioxide decomposes at high temperature in a sealed container:

$$2 \operatorname{SO}_3(g) \Longrightarrow 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$$

Initially, the vessel is charged at 1000 K with $SO_3(g)$ at a partial pressure of 0.500 atm. At equilibrium the SO₃ partial pressure is 0.200 atm. Calculate the value of K_p at 1000 K. (8)

d) For the reaction

ii

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g) \qquad \Delta H^\circ = 87.9 \text{ kJ}$$

in which direction will the equilibrium shift when

- i. $Cl_2(g)$ is removed,
- ij. the temperature is decreased,
- III. the volume of the reaction system is increased,
- iv. $PCl_3(g)$ is added?

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 [*] m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X ₋ 10 ⁻³⁴ J s
Avogadro constant	N,	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	บ	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m,	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻¹⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε ₀	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \ge 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = c \hbar/2m_{\rm c}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = c \hbar/2m_p$	5.050 79 X 10 ⁻²¹ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_{p} = 4\pi \epsilon_{p} \hbar/m_{e} c^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{\rm p} e^2 c/2h$	⁻ 7.297 35 X 10 ⁻³
Rydberg constant	$R_{r} = m_{e} c^{4}/8h^{3}c\epsilon_{n}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

Contraction of the second s

1 cal = 1 eV =		joules (2 X 10		1 erg 1 eV/n	nolecul	e	8	1 X 1 96 48	Į-)	
Prefixes	f femto 10 ¹³	p pico 10 ⁻¹²	n pano 10-9	µ micro 10 ⁻⁴	milli	c centi 10 ⁻²	d deci 10 ⁻¹	k kilo 10 ³	M mega 10 ⁶	G giga 10°
*										

-

								G	ROUPS	;	. .		٠.		•			
	1	2	3	4	5	б.	. 7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	1/	11/	IIIB	IVB	VB	. VIB	VIIB		VIIIB		18	IIB	IIIA ·	IVA	VA	AIY	VIIA .	VIIIA
	1.008							٠	•									4.003
1 - F	11																•	lle
	6.941	0.017	1								A 1		10.011	17.011	14 007	15.000	110.009	2 20.180
-	0.941	9.012 . Bc										c mass)	B	12.011 C	14.007 N	15.999 O	18.998 F	-Ne
2	1	. DC	.						•			nbol — ic No. —	5	6		8	9	.10
•	1									······								
	22.990	24:305						•			•		26.982	28.086	30.974	32.06	35.453	39,948
3	Na 11	Mg				TRAN	SITION	(ELEM	LENTS				Al	Si ·	P	S	EI	Ar
		12		1	1	·		·····			·	·····	13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.99Ġ	54.938	55.847	58.933		63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V.	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19 85.468	20	21	22	23	24	25	· 26	27	28	29	30	31	32	33	34	. 35	36
~	85.408 Rb	87.62 Sr	88.906 Y	91.224 Zr	92.906 Nb	95.94 Mo	98.907 Te	101:07	102.94 Rh	106.42 Pd	107.87	112.41	114.82	118.71 Sn	121.75 Sb	127.60 Te	126.90	131.29
5	37	38	39	40	41	42	43	Ru 44	45	46	Ag 47	Cd 48	In 49	50	51	52	53	Xc 54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	B1	Po	At	Rn
U	55	56	57	.72	73	74	75	76	77	78	79	80	81	82	83	-84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)	· · · · ·				· · · · · ·		1	
. 7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		•	,					
	87	88	89	104	105	106	107.	108	109	110								•
		,	1	L)	•	L		L	l	1							
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	1
. *L	*Lanthanide Series			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	.Ho	- Er	Ţm	Yb	Lu	
		,	-	58 ·	59	60	61	62	63	64	65	66	.: 67	68	69	70	71	
**	Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pa	U	Np	Pu -	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			,	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
														L	L			

PERIODIC TABLE OF ELEMENTS

TREACT

3

۰ ۲

· <•1

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STUDENT ID NUMBER:_

 $p \to \sigma$

i

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1.	(A)	(B)	(C)	(D)	(E)	•	21.	(A)	(B)	(C)	(D)	(E)
2	(A)	(B)	(C)	(D)	(E)		22	(A)	(B)	(C)	(D)	(E)
3	(A)	(B)	(C)	(D)	(E)	ь.	23	(A)	(B)	(C)	(D)	(E)
4	(A)	(B)	(C)	(D)	(E)		24	(A)	(B)	(C)	(D)	(E)
5	(A)	(B)	(C)	(D)	(E)		25	(A)	(B)	(C)	(D)	(E)
6	(A)	(B)	(C)	(D)	(E)		26	(A)	(B)	(C)	(D)	(E)
7	(A)	(B)	(C)	(D)	(E)		27	(A)	(B)	(C)	(D)	(E)
8	(A)	(B)	(C)	(D)	(E)		28	(A)	(B)	(C)	(D)	(E)
9	(A)	(B)	(C)	(D)	(E)		29	(A)	(B)	(C)	(D)	(E)
10	(A)	(B)	(C)	(D)	(E)		30	(A)	(B)	(C)	(D)	(E)
11	(A)	(B)	(C)	(D)	(E)	•	31	(A)	(B)	(C)	(D)	(E)
12	(A)	(B)	(C)	(D)	(E)		32	(A)	(B)	(C)	(D)	(E)
13	(A)	(B)	(C)	(D)	(E)		33	(A)	(B)	(C)	(D)	(E)
14	(A)	(B)	(C)	(D)	(E)		34	(A)	(B)	(C)	(D)	(E)
15	·(A)	(B)	(C)	(D)	(E)		.35	(A)	(B)	(C)	(D)	(E)
16	(A)	(B)	(C)	(D)	(E)		36	(A)	(B)	(C)	(D)	(E)
17	(A)	(B)	(C)	(D)	(E)		37	(A)	(B)	(C)	(D)	(E)
18	(A)	(B)	(C)	(D)	(E)		38	(A)	(B)	(C)	(D)	(E)
19	(A)	(B)	(C)	(D)	(E)		39	(A)	(B)	(C)	(D)	(E)
20	(A)	(B)	(C)	(D)	(E)		40	(A)	(B)	(C)	(D)	(E)

. -