UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013/14

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:
THREE (3) HOURS

INSTRUCTIONS:

(i) Answer all questions in section A (total 50 marks)
(ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1. A small amount of oil added to water is an example of a \qquad .
(A) homogeneous mixture
(B) heterogeneous mixture
(C) compound
(D) pure substance
(E) solid
2. Which one of the following has the element name and symbol correctly matched?
(A) S, sodium
(B) $\mathrm{Tn}, \mathrm{tin}$
(C) Ir, iron
(D) Ne , neon
(E) B, bromine
3. An element cannot \qquad .
(A) be part of a heterogeneous mixture
(B) be part of a homogeneous mixture
(C) be separated into other substances by chemical means
(D) be a pure substance
(E) interact with other elements to form compounds
4. Which of the following has the same number of significant figures as the number 1.00310 ?
(A) 1×10^{6}
(B) 199.791
(C) 8.66
(D) 5.1149
(E) 100
5. Consider the following selected postulates of Dalton's atomic theory:
(i) Each element is composed of extremely small particles called atoms.
(ii) Atoms are indivisible.
(iii)Atoms of a given element are identical.
(iv)Atoms of different elements are different and have different properties.

Which of the postulates is(are) no longer considered valid?
(A) (i) and (ii)
(B) (ii) only
(C) (ii) and (iii)
(D) (iii) only
(E) (iii) and (iv)
6. The gold foil experiment performed in Rutherford's lab \qquad .
(A) confirmed the plum-pudding model of the atom
(B) led to the discovery of the atomic nucleus
(C) was the basis for Thomson's model of the atom
(D) utilized the deflection of beta particles by gold foil
(E) proved the law of multiple proportions
7. All atoms of a given element have the same \qquad -
(A) mass
(B) number of protons
(D) number of electrons and neutrons
(C) number of neutrons
(E) density
8. There are \qquad electrons, \qquad protons, and \qquad neutrons in an atom of ${ }_{54}^{132} \mathrm{Xe}$.
(A) $132,132,54$
(B) $54,54,132$
(C) $78,78,54$
(D) $54,54,78$
(E) $78,78,132$
9. In the symbol ${ }_{6}^{x} C, \mathrm{x}$ is \qquad .
(A) the number of neutrons
(B) the atomic number
(C) the mass number
(D) the isotope number
(E) the elemental symbol
10. Isotopes are atoms that have the same number of \qquad but differing number of \qquad .
(A) protons, electrons
(B) neutrons, protons
(C) protons, neutrons
(D) electrons, protons
(E) neutrons, electrons
11. Elements \qquad exhibit similar physical and chemical properties.
(A) with similar chemical symbols
(B) in the same period of the periodic table
(C) with similar atomic masses
(D) on opposite sides of the periodic table
(E) in the same group of the periodic table
12. Which pair of elements is most apt to form a molecular compound with each other?
(A) aluminum, oxygen
(B) magnesium, iodine
(C) sulfur, fluorine
(D) potassium, lithium
(E) barium, bromine
13. Which species below is the nitride ion?
(A) Na^{+}
(B) $\mathrm{NO}_{3}{ }^{-}$
(C) $\mathrm{NO}_{2}{ }^{-}$
(D) NH_{4}^{+}
(E) N^{3-}
14. Barium reacts with a polyatomic ion to form a compound with the general formula $\mathrm{Ba}_{3}(\mathrm{X})_{2}$. What would be the most likely formula for the compound formed between sodium and the polyatomic ion X ?
(A) NaX
(B) $\mathrm{Na}_{2} \mathrm{X}$
(C) $\mathrm{Na}_{2} \mathrm{X}_{2}$
(D) $\mathrm{Na}_{3} \mathrm{X}$
(E) $\mathrm{Na}_{3} \mathrm{X}_{2}$
15. Which one of the following compounds is chromium(III) oxide?
(A) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(B) CrO_{3}
(C) $\mathrm{Cr}_{3} \mathrm{O}_{2}$
(D) $\mathrm{Cr}_{3} \mathrm{O}$
(E) $\mathrm{Cr}_{2} \mathrm{O}_{4}$
16. The correct name for MgF_{2} is \qquad .
(A) monomagnesium difluoride
(B) magnesium difluoride
(C) manganese difluoride
(D) manganese bifluoride
(E) magnesium fluoride
17. When the following equation is balanced, the coefficients are \qquad .

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(A) $2,3,4,4$
(B) $1,4,8,9$
(C) $2,12,8,9$
(D) $4,4,32,36$
(E) $2,25,16,18$
18. The formula weight of aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$ is \qquad u.
(A) 342.15
(B) 123.04
(C) 59.04
(D) 150.14
(E) 273.06
19. The mass \% of Al in aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$ is \qquad -
(A) 7.886
(B) 15.77
(C) 21.93
(D) 45.70
(E) 35.94
20. A 30.5 gram sample of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ contains \qquad mol of glucose.
(A) 0.424
(B) 0.169
(C) 5.90
(D) 2.36
(E) 0.136
21. A 30.5 gram sample of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ contains \qquad atoms of carbon.
(A) 1.02×10^{23}
(B) 6.12×10^{23}
(C) 6.02×10^{23}
(D) 2.04×10^{23}
(E) 1.22×10^{24}
22. How many sulfur dioxide molecules are there in 0.180 mol of sulfur dioxide?
(A) 1.80×10^{23}
(B) 6.02×10^{24}
(C) 6.02×10^{23}
(D) 1.08×10^{24}
(E) 1.08×10^{23}
23. Which of the following is insoluble in water at $25^{\circ} \mathrm{C}$?
(A) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $\mathrm{Na}_{2} \mathrm{~S}$
(C) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
(D) $\mathrm{Ca}(\mathrm{OH})_{2}$
(E) $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
24. Which combination will produce a precipitate?
(A) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
(B) $\mathrm{NaOH}(\mathrm{aq})$ and KCl aq)
(C) $\mathrm{AgNO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})$
(D) KOH aq) and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(E) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
25. The reaction between strontium hydroxide and chloric acid produces \qquad .
(A) a molecular compound and a weak electrolyte
(B) two weak electrolytes
(C) two strong electrolytes
(D) a molecular compound and a strong electrolyte
(E) two molecular compounds
26. Which of the following are weak acids?
(A) $\mathrm{HF}, \mathrm{HBr}$
(B) $\mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HBr}$
(C) HI, HF
(D) HF
(E) none of the above
27. The balanced reaction between aqueous potassium hydroxide and aqueous acetic acid is
$\overline{(\mathrm{A}) \mathrm{KOH}(\mathrm{aq})}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{OH}^{-}(\mathrm{l})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{+}(\mathrm{aq})+\mathrm{K}(\mathrm{s})$
(B) $\mathrm{KOH}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l) $+\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
(C) $\mathrm{KOH}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{K}(\mathrm{s})$
(D) $\mathrm{KOH}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(E) $\mathrm{KOH}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$
28. In which reaction does the oxidation number of oxygen increase?
(A) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
(B) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (l)
(C) $\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
(D) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(E) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
29. In which species does nitrogen have the highest oxidation number?
(A) N_{2}
(B) NH_{3}
(C) HNO_{2}
(D) $\mathrm{NO}_{2}{ }^{-}$
(E) NaNO_{3}
30. What are the respective concentrations (M) of Mg^{+2} and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$afforded by dissolving $0.600 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ in water and diluting to 135 mL ?
(A) 0.444 and 0.889
(B) 0.0444 and 0.0889
(C) 0.889 and 0.444
(D) 0.444 and 0.444
(E) 4.44 and 8.89
31. A 0.100 M solution of \qquad will contain the highest concentration of potassium ions.
(A) potassium phosphate
(B) potassium hydrogen carbonate
(C) potassium hypochlorite
(D) potassium iodide
(E) potassium oxide
32. The wavelength of light that has a frequency of $1.20 \times 10^{13} \mathrm{~s}^{-1}$ is \qquad m.
(A) 25.0
(B) 2.50×10^{-5}
(C) 0.0400
(D) 12.0
(E) 2.5
33. The wavelength of a photon that has an energy of $6.33 \times 10^{-18} \mathrm{~J}$ is \qquad m.
(A) 3.79×10^{-7}
(B) 3.10×10^{-8}
(C) 2.38×10^{23}
(D) 4.21×10^{-24}
(E) 9.55×10^{15}
34. Calculate the energy (J) change associated with an electron transition from $n=2$ to n $=5$ in a hydrogen atom.
(A) 6.5×10^{-19}
(B) 5.5×10^{-19}
(C) 8.7×10^{-20}
(D) 4.6×10^{-19}
(E) 5.8×10^{-53}
35. The de Broglie wavelength of an electron is $8.7 \times 10^{-11} \mathrm{~m}$. The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$. The velocity of this electron is \qquad m / s.
(A) 8.4×10^{-3}
(B) 1.2×10^{-7}
(C) 6.9×10^{-5}
(D) 8.4×10^{6}
(E) 8.4×10^{-3}
36. The \qquad quantum number defines the shape of an orbital.
(A) spin
(B) magnetic
(C) principal
(D) angular momentum
(E) psi
37. The $\mathrm{n}=1$ shell contains \qquad p orbitals. All the other shells contain
p orbitals.
(A) 3, 6
(B) 0,3
(C) 6,2
(D) 3,3
(E) 0,6
38.) Each d-subshell can accommodate a maximum of \qquad electrons.
(A) 6
(B) 2
(C) 10
(D) 3
(E) 5
39. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{3}$ is the electron configuration of $\mathrm{a}(\mathrm{n})$ \qquad atom.
(A) As
(B) V
(C) P
(D) Sb
(E) Sn
40. The correct ground-state electron configuration for molybdenum is \qquad .
(A) $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{10}$
(B) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{4}$
(C) $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{5}$
(D) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{5}$
(E) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{9}$
41. Which group in the periodic table contains elements with the valence electron configuration of $n s^{2} n p^{\text {l}}$?
(A) 1
(B) 2
(C) 13
(D) 14
(E) 18
42. In which set of elements would all members be expected to have very similar chemical properties?
(A) $\mathrm{O}, \mathrm{S}, \mathrm{Se}$
(B) N, O, F
(C) $\mathrm{Na}, \mathrm{Mg}, \mathrm{K}$
(D) $\mathrm{S}, \mathrm{Se}, \mathrm{Si}$
(E) $\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$
43. Electrons in the 1s subshell are much closer to the nucleus in Ar than in He due to the larger \qquad in Ar.
(A) nuclear charge
(B) paramagnetism
(C) diamagnetism
(D) Hund's rule
(E) azimuthal quantum number
44. The atomic radius of main-group elements generally increases down a group because
\qquad
(A) effective nuclear charge increases down a group
(B) effective nuclear charge decreases down a group
(C) effective nuclear charge zigzags down a group
(D) the principal quantum number of the valence orbitals increases
(E) both effective nuclear charge increases down a group and the principal quantum number of the valence orbitals increases
45. Which one of the following atoms has the largest radius?
(A) O
(B) F
(C) S
(D) Cl
(E) Ne
46. Of the choices below, which gives the order for first ionization energies?
(A) $\mathrm{Cl}>\mathrm{S}>\mathrm{Al}>\mathrm{Ar}>\mathrm{Si}$
(B) $\mathrm{Ar}>\mathrm{Cl}>\mathrm{S}>\mathrm{Si}>\mathrm{Al}$
(C) $\mathrm{Al}>\mathrm{Si}>\mathrm{S}>\mathrm{Cl}>\mathrm{Ar}$
(D) $\mathrm{Cl}>\mathrm{S}>\mathrm{Al}>\mathrm{Si}>\mathrm{Ar}$
(E) $\mathrm{S}>\mathrm{Si}>\mathrm{Cl}>\mathrm{Al}>\mathrm{Ar}$
47. Which of the following correctly represents the second ionization of aluminum?
(A) $\mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{g})$
(B) $\mathrm{Al}(\mathrm{g}) \rightarrow \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{-}$
(C) $\mathrm{Al}^{-}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Al}^{2-}(\mathrm{g})$
(D) $\mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Al}^{2+}(\mathrm{g})$
(E) $\mathrm{Al}^{+}(\mathrm{g}) \rightarrow \mathrm{Al}^{2+}(\mathrm{g})+\mathrm{e}-$
48. Which ion below has the largest radius?
(A) Cl^{-}
(B) K^{+}
(C) Br
(D) F
(E) Na^{+}
49. In the Lewis symbol for a sulfur atom, there are \qquad paired and \qquad unpaired electrons.
(A) 2, 2
(B) 4,2
(C) 2,4
(D) 0,6
(E) 5,1
50. The central atom in \qquad violates the octet rule.
(A) NH_{3}
(B) SeF_{2}
(C) BF_{3}
(D) AsF_{3}
(E) CF_{4}

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer
any two questions. In all calculations answers must have the correct number of
significant figures and correct units.

Question 1 (25 marks)

(a) Consider the following molecules: $\mathrm{BF}_{3}, \mathrm{KrF}_{2}$ and PF_{5}. Draw the Lewis structure of each molecule and use VSEPR theory to predict the shape.
(b) Use VSEPR theory to predict the shape of the following oxoanions: $\mathrm{ClO}_{3}{ }^{-}, \mathrm{ClO}_{4}{ }^{-}$and $\mathrm{ClO}_{2}{ }^{-}$.
(c) Draw three resonance structures of the cyanate anion, NCO^{-}, (C is central atom). Calculate the formal charge on each atom in each structure and hence indicate which is the most important structure.
[7]

Question 2 (25 marks)

(a) Sulfur and oxygen react to produce sulfur trioxide. In a particular experiment, 7.9 grams of SO_{3} are produced by the reaction of 5.0 grams of O_{2} with 6.0 grams of S . What is the \% yield of SO_{3} in this experiment?

$$
\begin{equation*}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \text { (not balanced) } \tag{9}
\end{equation*}
$$

(b) What is the empirical formula of a compound that contains $49.4 \% \mathrm{~K}, 20.3 \% \mathrm{~S}$, and $30.3 \% \mathrm{O}$ by mass?
(c) Combustion of a $1.031-\mathrm{g}$ sample of a compound containing only carbon, hydrogen, and oxygen produced 2.265 g of CO_{2} and 1.236 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
$[10]^{\prime}$

Question 3 (25 marks)

(a) Write the molecular equation and the net ionic equation for the formation of an aqueous solution of NiI_{2} and evolution of CO_{2} gas when solid NiCO_{3} is mixed with aqueous hydriodic acid.
(b) Suggest two aqueous solutions that can be used to prepare iron(II) phosphate. Write the net ionic equation for the precipitation reaction.
(c) What mass (g) of AgBr is formed when 35.5 mL of $0.184 \mathrm{M} \mathrm{AgNO}_{3}$ is treated with an excess of aqueous hydrobromic acid?
(d) What volume (L) of $0.250 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is required to neutralize a solution prepared by dissolving 17.5 g of NaOH in 350 mL of water?
(e) Pure acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ is a liquid and is known as glacial acetic acid. Calculate the molarity of a solution prepared by dissolving 10.00 mL of glacial acetic acid at 25 ${ }^{\circ} \mathrm{C}$ in sufficient water to give 500.0 mL of solution. The density of glacial acetic acid at $25^{\circ} \mathrm{C}$ is $1.05 \mathrm{~g} / \mathrm{mL}$.

General data and fundamental constants

PERIODIC TABLE OF ELEMENTS

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STUDENT ID NUMBER:

\qquad
Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1	A	B	C	D	E	26	A	B	C	D	E
2	A	B	C	D	E	27	A	B	C	D	E
3	A	B	C	D	E	28	A	B	C	D	E
4	A	B	C	D	E	29	A	B	C	D	E
5	A	B	C	D	E	30	A	B	C	D	E
6	A	B	C	D	E	31	A	B	C	D	E
7	A	B	C	D	E	32	A	B	C	D	E
8	A	B	C	D	E	33	A	B	C	D	E
9	A	B	C	D	E	34	A	B	C	D	E
10	A	B	C	D	E	35	A	B	C	D	E
11	A	B	C	D	E	36	A	B	C	D	E
12	A	B	C	D	E	37	A	B	C	D	E
13	A	B	C	D	E	38	A	B	C	D	E
14	A	B	C	D	E	39	A	B	C	D	E
15	A	B	C	D	E	40	A	B	C	D	E
16	A	B	C	D	E	41	A	B	C	D	E
17	A	B	C	D	E	42	A	B	C	D	E
18	A	B	C	D	E	43	A	B	C	D	E
19	A	B	C	D	E	44	A	B	C	D	E
20	A	B	C	D	E	45	A	B	C	D	E
21	A	B	C	D	E	46	A	B	C	D	E
22	A	B	C	D	E	47	A	B	C	D	E
23	A	B	C	D	E	48	A	B	C	D	E
24	A	B	C	D	E	49	A	B	C	D	E
25	A	B	C	D	E	50	A	B	C	D	E

