UNIVERSITY OF SWAZILAND
 FINAL EXAMINATION - 2014, MAY

TITLE OF PAPER : Introductory Chemistry II
COURSE NUMBER : C112
TIME : Three Hours

INSTRUCTIONS

:

1. Answer all questions in Section A (Total 50 marks)
2. Answer any two questions in Section B (each question is 25 marks)

NB: Non-programmable electronic calculators may be used
A data sheet, a periodic table and answer sheet (for Section A) are attached
Useful data and equations:
$1 \mathrm{~atm}=760$ Torr $=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
Arrhenius equation: $k=A e^{-E_{a} / R T} \quad$ or $\quad \ln k=\ln A-\frac{E_{a}}{R T}$
Van der Walls equation:

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

This Examination Paper Contains Six Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

Section A

1. Which of the following is/are characteristic(s) of gases?
A. High compressibility
B. Relatively large distances between molecules
C. Formation of homogeneous mixtures regardless of the nature of gases
D. High compressibility AND relatively large distances between molecules
E. High compressibility, relatively large distances between molecules AND formation
of homogeneous mixtures regardless of the nature of gases
2. A sample of a gas occupies $1.40 \times 10^{3} \mathrm{~mL}$ at $25^{\circ} \mathrm{C}$ and 760 mmHg . What volume will it occupy at the same temperature and 380 mmHg ?
A. $2,800 \mathrm{~mL}$
B. $2,100 \mathrm{~mL}$
C. $1,400 \mathrm{~mL}$
D. $1,050 \mathrm{~mL}$
E. 700 mL
3. A sample of nitrogen gas has a volume of 32.4 L at $20^{\circ} \mathrm{C}$. The gas is heated to $220^{\circ} \mathrm{C}$ at constant pressure. What is the final volume of nitrogen?
A. 2.94 L
B. 19.3 L
C. 31.4 L
D. 54.5 L
E. 356 L
4. A sample of N_{2} gas occupies 2.40 L at $20^{\circ} \mathrm{C}$. If the gas is in a container that can contract or expand at constant pressure, at what temperature will the N_{2} occupy 4.80 L ?
A. $10^{\circ} \mathrm{C}$
B. $40^{\circ} \mathrm{C}$
C. $146^{\circ} \mathrm{C}$
D. $313^{\circ} \mathrm{C}$
E. $685^{\circ} \mathrm{C}$
5. The gas pressure in an aerosol can is 1.8 atm at $25^{\circ} \mathrm{C}$. If the gas is an ideal gas, what pressure would develop in the can if it were heated to $475^{\circ} \mathrm{C}$?
A. 0.095 atm
B. 0.717 atm
C. 3.26 atm
D. 4.52 atm
E. 34.2 atm
6. A small bubble rises from the bottom of a lake, where the temperature and pressure are $4^{\circ} \mathrm{C}$ and 3.0 atm , to the water's surface, where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 0.95 atm. Calculate the final volume of the bubble if its initial volume was 2.1 mL .
A. 0.72 mL
B. 6.2 mL
C. 41.4 mL
D. 22.4 mL
E. 7.1 mL
7. 0.820 mole of hydrogen gas has a volume of 2.00 L at a certain temperature and pressure. What is the volume of 0.125 mol of this gas at the same temperature and pressure?
A. 0.0512 L
B. 0.250 L
C. 0.305 L
D. 4.01 L
E. 19.5 L
8. At what temperature will a fixed mass of gas with a volume of 125 L at $15^{\circ} \mathrm{C}$ and 750 mmHg occupy a volume of 101 L at a pressure of 645 mm Hg ?
A. $73^{\circ} \mathrm{C}$
B. $10.4^{\circ} \mathrm{C}$
C. $2^{\circ} \mathrm{C}$
D. $34^{\circ} \mathrm{C}$
E. $200^{\circ} \mathrm{C}$
9. A gas evolved during the fermentation of sugar was collected at $22.5^{\circ} \mathrm{C}$ and 702 mmHg . After purification its volume was found to be 25.0 L. How many moles of gas were collected?
A. 0.95 mol
B. 1.05 mol
C. 12.5 mol
D. 22.4 mol
E. 724 mol

Calculate the mass, in grams, of 2.74 L of CO gas measured at $33^{\circ} \mathrm{C}$ and 945 mmHg .
A. 0.263 g
B. 2.46 g
C. 3.80 g
D. 35.2 g
E. 206 g
11. At equilibrium, \qquad .
A) All chemical reactions have ceased
B) The rates of the forward and reverse reactions are equal
C) The rate constants of the forward and reverse reactions are equal
D) The value of the equilibrium constant is 1
E) The limiting reagent has been consumed
12. Which of the following expressions is the correct equilibrium-constant expression for the following reaction?
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
A) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]}$
B) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}$
C) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
D) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
E) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$
13. A sample of $\mathrm{NOBr}(0.64 \mathrm{~mol})$ was placed in a $1.00-\mathrm{L}$ flask containing no NO or Br_{2}. At equilibrium the flask contained 0.36 mol of NOBr . How many moles of NO and Br_{2}, respectively, are in the flask at equilibrium?
A) $.28,28$
B) . 36,18
C) $.28,14$
D) . $14, .23$
E) . 36,36
14. $K_{p}=0.0198$ at 721 K for the reaction
$2 \mathrm{HI}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
In a particular experiment, the partial pressures of H_{2} and I_{2} at equilibrium are 0.836 and
0.701 atm , respectively. The partial pressure of HI is \qquad atm.
A) 7.87
B) 29.6
C) 5.44
D) 0.108
E) 0.0116
15. Which one of the following will change the value of an equilibrium constant?
A) changing temperature
B) adding other substances that do not react with any of the species involved in the equilibrium
C) varying the initial concentrations of reactants
D) varying the initial concentrations of products
E) changing the volume of the reaction vessel
16. The equilibrium-constant expression depends on the \qquad of the reaction.
A) stoichiometry
B) mechanism
C) stoichiometry and mechanism
D) the quantities of reactants and products initially present
E) temperature
17. Which structure below represents an amine?
A)

B)

C)

D)

Consider the following two reactions:

$$
\begin{array}{ll}
A \rightarrow 2 B & \Delta H_{r \times n}^{\circ}=456.7 \mathrm{~kJ} / \mathrm{mol} \\
A \rightarrow C & \Delta H_{r \times n}^{\circ}=-22.1 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Determine the enthalpy change for the process:

$$
2 B \rightarrow C
$$

A) $\quad-478.8 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-434.6 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 434.6 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 478.8 \mathrm{~kJ} / \mathrm{mol}$
E) More information is needed to solve the problem.
19. The kinetic-molecular theory predicts that pressure rises as the temperature of a gas increases because \qquad _.
A) The average kinetic energy of the gas molecules decreases
B) The gas molecules collide more frequently with the wall
C) The gas molecules collide less frequently with the wall
D) The gas molecules collide more energetically with the wall
E) Both the gas molecules collide more frequently with the wall and the gas molecules collide more energetically with the wall
20. Identify the INCORRECT statement below:
a) Potential energy is the energy possessed by virtue of position or composition.
b) Energy is the capacity to do work or transfer heat.
c) In an exothermic reaction the value of H of the species is increasing in going from reactants to products.
d) Energy is neither created or destroyed in ordinary chemical reactions.
e) Kinetic energy is the energy of motion.
21. 1) A burning splint will burn more vigorously in pure oxygen than in air because
A) oxygen is a reactant in combustion and concentration of oxygen is higher in pure oxygen than is in air.
B) oxygen is a catalyst for combustion.
C) oxygen is a product of combustion.
D) nitrogen is a product of combustion and the system reaches equilibrium at a lower temperature.
E) nitrogen is a reactant in combustion and its low concentration in pure oxygen catalyzes the combustion.
22. Which one of the following is not a valid expression for the rate of the reaction below?
$4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
A) $-\frac{1}{7} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}$
B) $\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}$
C) $\frac{1}{6} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}$
D) $-\frac{1}{4} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta \mathrm{t}}$
E) All of the above are valid expressions of the reaction rate.
23. Which statement is INCORRECT?
a) A process that absorbs energy from its surroundings is called endothermic.
b) In an exothermic reaction the enthalpy of species increases.
c) Energy is the capacity to do work or to transfer heat.
d) Kinetic energy is the energy of motion.
e) Potential energy is the energy that a system possesses by virtue of its position or composition.
24. 7) How many isomers are possible for $\mathrm{C}_{4} \mathrm{H}_{10}$?
A) 1
B) 2
C) 3
D) 4
E) 10
25. How much heat is absorbed in the complete reaction of 3.00 grams of SiO_{2} with excess carbon in the reaction below? ΔH° for the reaction as written is +624.7 kJ .
$\mathrm{SiO}_{2}(\mathrm{~g})+3 \mathrm{C}(\mathrm{s}) \ldots \mathrm{SiC}(\mathrm{s})+2 \mathrm{CO}(\mathrm{g})$
a) 31.2 kJ
b) $1.13 \times 10^{5} \mathrm{~kJ}$
c) 5.06 kJ
d) $1.33 \times 10^{4} \mathrm{~kJ}$
e) 366 kJ
26. Which statement about hydrocarbons is false?
A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
B) Cyclic alkanes are structural isomers of alkenes.
C) Alkanes are more reactive than alkenes.
D) Alkanes can be produced by hydrogenating alkenes.
E) Alkenes can be polymerized.
27. From the following data at $25^{\circ} \mathrm{C}$:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}(\mathrm{g}) ; \Delta \mathrm{H}^{\circ}=-185 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}^{\circ}=-483.7 \mathrm{~kJ}$
Calculate $\Delta \mathrm{H}^{\circ}$ at 25° for the reaction below:
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a) +114 kJ
b) +299 kJ
c) -299 kJ
d) -114 kJ
e) -86.8 kJ
28. Given the standard heats of formation for the following compounds, calculate the ΔH° heat of reaction, for the following reaction:
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{g}) \longrightarrow 3 \mathrm{FeO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
ΔH_{f}° for $\mathrm{Fe}_{3} \mathrm{O}_{4}=-1118 \mathrm{~kJ}$
ΔH_{f}° for $\mathrm{CO}=-110.5 \mathrm{~kJ}$
ΔH_{f}° for $\mathrm{FeO}=-272 \mathrm{~kJ}$
ΔH_{f}° for $\mathrm{CO}_{2}=-393.5 \mathrm{~kJ}$
a) 54 kJ
b) 19 kJ
c) -263 kJ
d) -50 kJ
e) 109 kJ
29. Benzene behaves differently from a hydrocarbon which simply contains three $C=C$ bonds in that the latter would be expected to react much more readily with \qquad -.
A) H_{2}
B) Cl_{2}
C) Br_{2}
D) HCl
E) all of the above
30. A particular chemical reaction is characterized by $\Delta H_{\mathrm{rxn}}=+250 \mathrm{~kJ} / \mathrm{mol}$. Which of the following statements are true concerning this reaction?
I. Heat is liberated to the surroundings.
II. The reaction is endothermic.
III. The heat content of the products are lower than the reactants.
a) all are true
b) only II and III are true
c) only I and II are true
d) only II is true
e) none are true
31. Which one of the following is not an alcohol?
A) acetone
B) glycerol
C) ethanol
D) cholesterol
E) ethylene glycol
32. The following reaction would produce $a(n)$ \qquad .

$$
\mathrm{R}-\mathrm{OH}+\mathrm{R}^{\prime} \mathrm{COOH} \longrightarrow \text { ? }
$$

A) ketone
B) ether
C) aldehyde
D) alcohol
E) ester
33. From the following enthalpies of reaction find $\Delta \mathrm{H}_{\mathrm{xn}}$ for
$2 \mathrm{HCl}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HF}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}):$
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{Cl}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-148.4 \mathrm{~kJ} / \mathrm{mol}$
$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \cdots \mathrm{HF}(\mathrm{I}) ; \Delta \mathrm{H}=-600.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
a) $+766 \mathrm{~kJ} / \mathrm{mol}$
b) $-988 \mathrm{~kJ} / \mathrm{mol}$
c) $-840 \mathrm{~kJ} / \mathrm{mol}$
d) $+1337 \mathrm{~kJ} / \mathrm{mol}$
e) $-1560 \mathrm{~kJ} / \mathrm{mol}$
34. A reaction of 0.25 grams of $\mathrm{CaO}(\mathrm{s})$ with excess $\mathrm{HCl}(\mathrm{aq})$ results in a temperature rise of $1.23^{\circ} \mathrm{C}$. The calorimeter solution is found before hand to have a heat capacity of $96 \mathrm{cal} /{ }^{\circ} \mathrm{C}$. What is the $\Delta \mathrm{H}_{\mathrm{rxn}}$ per mole of the following reaction?
$\mathrm{CaO}(\mathrm{s})+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a) $-26.4 \mathrm{kcal} / \mathrm{mol}$
b) $-474.8 \mathrm{kcal} / \mathrm{mol}$
c) $+474.8 \mathrm{kcal} / \mathrm{mol}$
d) $26600 \mathrm{kcal} / \mathrm{mol}$
e) $-56 \mathrm{kcal} / \mathrm{mol}$
35. Which of the following compounds do not contain an sp^{3} hybridized oxygen atom?
A) ketones
B) alcohols
C) ethers
D) esters
E) water
36. Calculate $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{HCN}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$, given the following related reaction at $25^{\circ} \mathrm{C}$,
$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g})-->2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}_{\text {rxn }}=-870.8 \mathrm{~kJ}$
and the heats of formation of some species are $\Delta H_{f}=-80.3 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{NH}_{3}(\mathrm{~g}),-74.6 \mathrm{~kJ} / \mathrm{mol}$ for CH_{4}, and $-241.8 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Answers are in $\mathrm{kJ} / \mathrm{mol}$.
a) -135
b) -147
c) +270
d) +135
e) -870.8
37. Calculate $\Delta \mathrm{H}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the reaction $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ from the following data:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}) ; \Delta \mathrm{H}^{\circ}=-185 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}^{\circ}=-483.7 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$
a) -299 kJ
b) -86.8 kJ
c) +299 kJ
d) +114 kJ
e) -114 kJ
38. How much heat is released when 75 g of octane is burned completely if the enthalpy of combustion is $-5,500 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}_{8} \mathrm{H}_{18}$? The reaction is
$\mathrm{C}_{8} \mathrm{H}_{18}+25 / 2 \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$.
a) $4.1 \times 10^{5} \mathrm{~kJ}$
b) 3600 kJ
c) 7200 kJ
d) 8360 kJ
e) 5500 kJ
39. If 4.168 kJ of heat is added to a calorimeter containing 75.40 g of water, the temperature of the water and the calorimeter increases from $24.58^{\circ} \mathrm{C}$ to $35.82^{\circ} \mathrm{C}$. Calculate the heat capacity of the calorimeter (in $\mathrm{J} /{ }^{\circ} \mathrm{C}$). The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$.
a) $25.31 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
b) $17.36 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
c) $55.34 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
d) $315.5 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
e) $622 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
40. Estimate the enthalpy change for the reaction below (in $\mathrm{kJ} / \mathrm{mol}$) from the average bond energies given. There are two $\mathrm{C}-\mathrm{Cl}$ and two $\mathrm{C}-\mathrm{H}$ bonds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Remember that energy is absorbed when bonds are broken and released when they are formed.
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{g})$
Average Bond Energies
$\mathrm{C}-\mathrm{H}=413 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}-\mathrm{Cl}=432 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Cl}-\mathrm{Cl}=242 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}-\mathrm{Cl}=339 \mathrm{~kJ} / \mathrm{mol}$
a) +232
b) -578
c) -232
d) +578
e) +541
41. Which structure below is not correctly drawn?
tructure below is not correctly drawn?
A)

B)

D)
B)

E)

42. Calculate $\Delta \mathrm{H}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the reaction below given the heats of formation.

$$
2 \mathrm{ZnS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$ for $2 \mathrm{ZnS}(\mathrm{s})=-205.6$
$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$ for $3 \mathrm{O}_{2}(\mathrm{~g})=0$
$\Delta>\mathrm{H}_{\mathrm{f}}(\mathrm{k} / \mathrm{mol})$ for $2 \mathrm{ZnO}(\mathrm{s})=-348.3$
$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$ for $2 \mathrm{SO}_{2}(\mathrm{~g})=-296.8$
a) -582.2 kJ
b) -879.0 kJ
c) +257.1 kJ
d) +879.0 kJ
e) -257.1 kJ
43. Hybridization of the carbon atom indicated by (*) in $\mathrm{CH}_{3}{ }^{*} \mathrm{CH}_{2}-\mathrm{CH}_{3},{ }^{*} \mathrm{CH}_{2}=\mathrm{CH}_{2}$, and $\mathrm{CH}_{3}-{ }^{-} \mathrm{C}=\mathrm{CH}$ is \qquad , \qquad , and \qquad respectively.
A) $s p^{3}, s p^{2}, s p$
B) $s p^{3}, s p, s p^{2}$
C) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
D) $s p, p^{3}, s p^{2}$
E) $s p^{2}, s p^{3}, s p$
44. The name of $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ is \qquad -.
A) 2,3,5-octatriene
B) 2,5,6-octatriene
C) 2, 3,6 - octatriene
D) 3,5,6-octatriene
E) 3, 4, 7 - octatriene
45. \qquad
A) $\mathrm{C}_{3} \mathrm{H}_{8}$
B) $\mathrm{C}_{3} \mathrm{H}_{6}$
C) $\mathrm{C}_{6} \mathrm{H}_{6}$
D) $\mathrm{C}_{17} \mathrm{H}_{36}$
E) CH_{8}
46. The addition of HBr to 2-butene produces \qquad -.
A) 1-bromobutane
B) 2-bromobutane
C) 1,2-dibromobutane
D) 2,3-dibromobutane
E) no reaction

The data in the table below were obtained for the reaction:
$2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Experiment Number	$\left[\mathrm{ClO}_{2}\right](\mathrm{M})$	$\left[\mathrm{OH}^{-}\right](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

47. What is the order of the reaction with respect to ClO_{2} ?
A) 1
B) 0
C) 2
D) 3
E) 4
48. What is the order of the reaction with respect to OH^{-}?
A) 0
B) 1
C) 2
D) 3
E) 4
49. What is the overall order of the reaction?
A) 4
B) 0
C) 1
D) 2
E) 3
50. What is the magnitude of the rate constant for the reaction?
A) 1.15×10^{4}
B) 4.6
C) 230
D) 115
E) 713

Section B

Question 1

a. Write the equilibrium-constant expression K_{c} for

$$
\begin{align*}
& \text { i. } \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g) \tag{2}\\
& \text { ii. } \mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}^{-}(a q) \rightleftharpoons \mathrm{CdBr}_{4}{ }^{2-}(a q) \tag{2}
\end{align*}
$$

b. The initial rate of a reaction $A+B \rightarrow C$ was measured for several different starting concentrations of A and B, and the results are as follows:

Experiment Number	$[A](M)$	$[B](M)$	Initial Rate (M / \mathbf{s})
1	0.100	0.100	4.0×10^{-5}
2	0.100	0.200	4.0×10^{-5}
3	0.200	0.100	16.0×10^{-5}

Using these data, determine
i. the rate law for the reaction,
ii. the rate constant,
iii. the rate of the reaction, when $[\mathrm{A}]=0.050 \mathrm{M}$ and $[\mathrm{B}]=0.100 \mathrm{M}$.
c. What is the conjugate acid of $\mathrm{CN}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}{ }^{-}$?
d. Calculate the concentration of $\mathrm{H}^{+}(a q)$ in
i. a solution in which $\left[\mathrm{OH}^{-}\right]$is 0.010 M ,
ii. a solution in which $\left[\mathrm{OH}^{-}\right]$is $1.8 \times 10^{-9} \mathrm{M}$ both at $25^{\circ} \mathrm{C}$.
e. The hydrogen sulfite ion $\left(\mathrm{HSO}_{3}{ }^{-}\right)$is amphiprotic. Write an equation for the reaction of $\mathrm{HSO}_{3}{ }^{-}$ with water
i. in which the ion acts as an acid and
ii. in which the ion acts as a base. In both cases identify the conjugate acidbase pairs
f. In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
In an experiment, 0.35 mol of CO and 0.40 mol of $\mathrm{H}_{2} \mathrm{O}$ were placed in a 1.00 L reaction vessel. At equilibrium, there were 0.19 mol of CO remaining. Calculate K_{eq} at the

Question 2

a. Name any six classes of organic compounds.
b. Give the functional group and a named example for each of the classes of compounds named above.
c. Is a $\mathrm{C}_{3} \mathrm{H}_{6}$ a saturated hydrocarbon or not? Explain your answer.
d. Draw all the structural and geometric isomers of pentene, $\mathrm{C}_{6} \mathrm{H}_{10}$, that have an unbranched hydrocarbon chain.
e. Beer was brewed by ancient Egyptians and is thought to have been of the rations of the builders of pyramids. The energy content of beer comes from glucose and ethanol. The glucose and ethanol composition of beer is given below:

Constituent	Concentration $\left(\mathbf{g} / \mathbf{d m}^{\mathbf{3}}\right)$
Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	20
Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	20

Ethanol is food as well as a drug. Like glucose it burns to give carbon dioxide and water.
i) Write balanced equations for the complete combustion of ethanol and glucose
ii) Given that the standard enthalpy change of combustion for ethanol and glucose are $1370 \mathrm{k} \mathrm{mol}^{-1}$ and $-3000 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, calculate the enthalpy change per gram for both glucose and ethanol.

Question 3

a. A BSC student dissolves an asprin tablet in 0.500 L of water at $25^{\circ} \mathrm{C}$. the tablet is known to contain 0.32 g of acetylsalicylic acid, $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$ whose structure is given below:

aceylisalicyclic acid
i) Write the equilibrium expression for the ionization of acetylsalicyclic acid in water
ii) Given that $\mathrm{Ka}=3.3 \times 10-4$ for acetylsalicyclic acid at $25^{\circ} \mathrm{C}$, calculate the pH of the asprin solution.
b. With reasons, state which direction will each of the following reactions shift after the specified stress is applied.
i) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
(an increase in total pressure)
ii) $2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-113 \mathrm{~kJ}$
(a decrease in temperature)
iii) CaCO_{3} (s) $\longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(removal of some of the CO_{2} formed)
c. Define or explain the following terms:
i) Calorimeter constant
ii) Enthalpy change of combustion, $\Delta H^{\circ}{ }_{C}$
iii) Enthalpy change of vaporization, ΔH° vap
d. When a reaction that was known to release 35.10 kJ of heat was carried out in a bomb calorimeter containing 100 mL of water, a $7.3^{\circ} \mathrm{C}$ rise in temperature was observed. A small amount of salt was placed in the same calorimeter and 100.0 mL of dilute $\mathrm{HCL}(\mathrm{aq})$ was added to it. The temperature then rose by $3.25^{\circ} \mathrm{C}$. Calculated the heat released during this reaction.
(6)

UNIVERSITY OF SWAZILAND

C112 SECTION A ANSWER SHEET

STUDENT ID NUMBER: \qquad

The correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided below. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it, a zero will be given for that question.

	A	B	C	D	E
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					

	A	B	C	D	E
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47	\vdots				
48					
49					
50					

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~ms}^{-1}$
Elementary charge	e	$1.602177 \times 10^{19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{Cmol}^{-1}$
Boltumann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{3}$
Gas constant	$R=N_{A} k$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{1}$ $6.2364 \times 10 \mathrm{~L}^{\text {Torr }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-44} \mathrm{Js}$
	$\boldsymbol{h}=\mathbf{W} / 2 \pi$	$1.05457 \times-10^{34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{22} \mathrm{~mol}^{4}$
Alomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m_{6}	$9.10939 \times 10^{-12} \mathrm{Kg}$
proton	mp	$1.67262 \times 10^{-37} \mathrm{Kg}$
neutron	m.	$1.67493 \times 10^{42} \mathrm{Kg}$
Vacuum perrittivity	$\varepsilon_{0}=1 / c^{2} \mu_{2}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon$.	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum perneability	μ_{0}	$\begin{aligned} & 4 \pi \times 10^{2} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-3} \\ & 4 \pi \times 10^{-} \cdot \mathrm{T}^{2} \mathrm{~J}^{-1} \mathrm{ma}^{3} \end{aligned}$
Magneton		
Bohr		$9.27402 \times 10^{-44} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{N}=e^{\prime} / 2 m^{\prime}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
- g value	ge	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi E_{5} \ddot{M}^{\prime} \mathrm{m}_{8} e^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 \mathrm{~b}$	7.29735×10^{4}
Rydberg constant	$\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{.} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{~EB}_{6}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fail	g	$9.80665 \mathrm{~ms} \mathrm{~s}^{2}$
Gravitational constant	G	$6.67259 \times 10^{11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (J)	1 erg
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule

Prefixes	\mathbf{f}	\mathbf{p}	\mathbf{n}	$\boldsymbol{\mu}$	m	\mathbf{c}	\mathbf{d}	\mathbf{k}	M	G
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

PERIODIC TABLE OF ELEMENTS

GROUPS																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	6 17 18 A VIIA VIIIA	
prriods	IA	IIA	1118	IVB	VB	. VIB	VIIB	VIIIB			IB	118	11 A A	IVA	VA	VIA		
. 1	$\begin{gathered} 1.0018 \\ \text { II } \\ 1 \end{gathered}$.															.	$\begin{gathered} 4.003 \\ 118 \\ 2 \\ \hline \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 9.012 \\ \mathrm{Be} \\ 4 \\ \hline \end{gathered}$							-		Atomic Sym Alom	$\begin{aligned} & \mathrm{c} \text { mass } \\ & \text { ibol } \\ & \mathrm{ic} \mathrm{No} \text {. } \end{aligned}$	$\begin{aligned} & 10.811 \\ & B \\ & 5 \end{aligned}$	$\begin{array}{\|c} \hline 12.011 \\ C \\ 6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 14.007 \\ \mathrm{~N} \\ 7 \\ \hline \end{array}$	$\begin{gathered} 15.999 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ \mathbf{F} \\ 9 \end{gathered}$	$\begin{array}{c\|} \hline 20.180 \\ -\mathrm{Ne} \\ .10 \end{array}$
3	$\begin{gathered} 22: 990 \\ \mathrm{Na}_{\mathrm{a}} \\ 11 \end{gathered}$	$\begin{gathered} 24: 305 \\ \mathrm{Mg} \\ 12 \end{gathered}$				TRAN	SITION	ELEM	ENTS	-	-		$\begin{array}{\|c\|} \hline 26.982 \\ \text { AI } \\ 13 \end{array}$	$\begin{gathered} 28.086 \\ \mathrm{Si} \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline 30.974 \\ \mathrm{P} \\ 15 \\ \hline \end{array}$	$\begin{gathered} 32.06 \\ S \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{Cl} \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \text { Ar } \\ 18 \end{gathered}$
4	$\begin{array}{\|c\|} \hline 39.098 \\ K \\ 19 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{array}$	$\begin{gathered} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ \mathrm{Ti} \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 50.942 \\ v \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 51.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 54.938 \\ \mathrm{Mn} \\ 25 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 55.847 \\ \mathrm{Fe} \\ .26 \\ \hline \end{array}$	$\begin{gathered} 58.933: \\ \mathrm{Co} \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} 58,69 \\ \mathrm{Ni} \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 63.546 \\ \mathrm{Cu} \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ \mathrm{Zn} \\ 30 \end{gathered}$	$\begin{gathered} 69.723 \\ \mathbf{G a} \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 72.61 \\ \mathrm{Ge} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Se} \\ 34 \\ \hline \end{gathered}$	$\begin{array}{\|c} 79.904 \\ \mathbf{B r} \\ 35 \\ \hline \end{array}$	$\begin{gathered} 83.80 \\ \mathrm{Kr} \\ 36 \\ \hline \end{gathered}$
5	$\begin{array}{\|c} \hline 85.468 \\ R 6 \\ 37 \\ \hline \end{array}$	$\begin{aligned} & 87.62 \\ & \mathrm{Sr} \\ & 38 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 88.906 \\ \mathbf{Y} \\ 39 \\ \hline \end{array}$	$\begin{gathered} 91.224 \\ \mathbf{Z r} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \text { Mo } \\ 42 \\ \hline \end{gathered}$	$\begin{array}{\|c} 98.907 \\ T c \\ 43 \\ \hline \end{array}$	$\begin{gathered} 101: 07 \\ \mathrm{Ru} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.9 .1 \\ \mathrm{Rh} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \mathrm{Pd} \\ 46 \end{gathered}$	$\begin{gathered} 107.87 \\ \mathrm{Ag} \\ 47 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 112.41 \\ \mathrm{Cd} \\ 48 \\ \hline \end{array}$	$\begin{gathered} 114.82 \\ \mathrm{ln} \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} 118.71 \\ \mathrm{Sn} \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ 56 \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ T e \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ I \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131.29 \\ X_{\mathrm{c}} \\ 54 \\ \hline \end{gathered}$
6	$\begin{array}{\|c} 132.91 \\ \mathrm{Cs} \\ 55 \\ \hline \end{array}$	$\begin{gathered} 137.33 \\ \mathrm{Ba}: \\ 56 \end{gathered}$	$\begin{gathered} 138.91 \\ { }^{*} \mathrm{La} \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ H f \\ 72 \end{gathered}$	$\begin{array}{\|c} 180.95 \\ \mathrm{Ta} \\ 73 \end{array}$	$\begin{gathered} 183.85 \\ W \\ 74 \end{gathered}$	$\begin{array}{\|c\|} \hline 186.21 \\ \mathrm{Re} \\ 75 \\ \hline \end{array}$	190.2 05 76	$\begin{gathered} 192.22 \\ \text { Ir } \\ 77 \end{gathered}$	$\begin{gathered} 195.08 \\ \mathrm{Pt} \\ 78 \end{gathered}$	$\begin{gathered} 196.97 \\ \mathrm{Au} \\ 79 \end{gathered}$	$\begin{gathered} 200.59 \\ \mathrm{Hg} \\ \mathrm{BO} \end{gathered}$	$\begin{gathered} 204.38 \\ \mathrm{Tl} \\ 81 \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ 82 \end{gathered}$	$\begin{gathered} 208.98 \\ \mathrm{Bi} \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} \hline(209) \\ \mathrm{P}_{0} \\ .84 \\ \hline \end{gathered}$	$\begin{gathered} \hline(210) \\ \text { At } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} (222) \\ \mathrm{Rn}_{1} \\ 86 \\ \hline \end{gathered}$
7	$\begin{aligned} & 223 \\ & \mathrm{Fr} \\ & 87 \\ & \hline \end{aligned}$	$\begin{gathered} 226.03 \\ \mathrm{Rai} \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} (227) \\ * * A C \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ \text { Rf } \\ 104 \\ \hline \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{aligned} & (263) \\ & \text { Unh } \\ & 106 \end{aligned}$	$\begin{aligned} & \hline(262) \\ & \text { Uns } \\ & 107 . \end{aligned}$	$\begin{aligned} & (265) \\ & \text { Uno } \\ & 108 \end{aligned}$	(260) Une 109	$\begin{aligned} & (267) \\ & \text { Uun } \\ & 110 \end{aligned}$								

*Lanthanide Series
**Actinide Scries

$\begin{gathered} 140.12 \\ \mathrm{Cc} \\ 58 \end{gathered}$	$\begin{gathered} 140.91 \\ \mathrm{Pr} \\ \mathrm{~s} \end{gathered}$	$\begin{gathered} 144.24 \\ \mathrm{Nd} \\ 60 \end{gathered}$	$\begin{gathered} \text { (145) } \\ \mathrm{Pm} \\ 61 \end{gathered}$	$\begin{gathered} 150.36 \\ S m \\ 62 \end{gathered}$	$\begin{gathered} \hline 151,96 \\ \mathrm{Eu} \\ 63 \end{gathered}$	$\begin{gathered} 157.25 \\ \mathbf{G d} \\ 64 \end{gathered}$	$\begin{gathered} 158.93 \\ \mathrm{~Tb} \\ 65 \end{gathered}$	$\begin{gathered} 162.50 \\ D^{\prime} \\ 66 \end{gathered}$	$\begin{gathered} 164.93 \\ . H 0 \\ : .67 \end{gathered}$	$\left[\begin{array}{c} 167 \cdot 26 \\ -\mathrm{Er} \\ 68 \end{array}\right.$	$\begin{gathered} 168.93 \\ \mathrm{Tm} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ Y b \\ 70 \end{gathered}$	$\begin{gathered} 174.97 \\ \mathrm{Lu} \\ 71 \end{gathered}$
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

