# UNIVERSITY OF SWAZILAND 

FINAL EXAMINATION

ACADEMIC YEAR 2013/2014

```
TITLE OF PAPER: INORGANIC CHEMISTRY I
COURSE NUMBER: C301
TIME ALLOWED: THREE (3) HOURS
INSTRUCTIONS: THERE ARE SIX (6) GUESTIONS.
ANSWER ANY FOUR (4) GUESTIONS.
EACH GUESTION IS WORTH }2
MARKS.
```

THE FOLLOWING HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER, AND ARE ATTACHED:

1. Periodic Table
2. $\mathbf{d}^{8}$ Tanabe-Sugano Diagram
3. Character Table for $C_{2 h}$ point group
4. Table of some hard, soft and intermediate acids and bases
5. Decision Tree
6. Table of Constants

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

[^0]
## Question One

a) Name each of the following compounds:
i) $\quad\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
ii) $\left[\mathrm{Co}(\mathrm{DMSO})_{6}\right] \mathrm{SO}_{4}$
iii) $\quad \mathrm{K}_{3}\left[\mathrm{TiCl}_{6}\right]$
b) Give the formula and draw one possible structure of each of the following:
i) $\quad \operatorname{Bis}($ acetyacetonato)oxovanadium(IV)
ii) Potassium tri- $\mu$-chlorobis(trichloroferrate(III))
[8]
c) State the type of isomerism that may be exhibited by the following sixcoordinate complexes, and draw structures of the isomers:
i) $\quad \mathrm{Cr}(\mathrm{py})_{3} \mathrm{Cl}_{3}, \mathrm{py}=$ pyridine
ii) Ru (dien) $\mathrm{Br}_{3}$, dien $=\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
[11]

## Question Two

a) When a solution of vanadate ion, $\mathrm{VO}_{4}{ }^{3-}$, is acidified with hydrochloric acid the complex ion, $\left[\mathrm{VO}_{2} \mathrm{Cl}_{4}\right]^{3-}$, is produced.
i) Deduce the oxidation number and the number of $d$ electrons of the vanadium ion in the complex
ii) Write a balanced equation for the reaction
iii) Assuming octahedral geometry, give two possible isomers for the complex ion
iv) Use appropriate orbital diagrams to explain the nature of $\pi$ bonding between the vanadium ion and any one of the oxo (i.e., $\mathrm{O}^{2-}$ ) ligands. [15]
b) The treatment of an aqueous solution of $\mathrm{NiCl}_{2}$ with $\mathrm{H}_{2} \mathrm{NCH}(\mathrm{Ph}) \mathrm{CH}(\mathrm{Ph}) \mathrm{NH}_{2}$ gives a blue four-coordinate complex ( $\mu_{\mathrm{eff}}=3.30 \mathrm{BM}$ ) which, upon heating, forms a yellow diamagnetic four-coordinate compound. Suggest explanations for these observations.

## Question Three

a) Explain the following observations concerning electronic spectra
i) $\quad\left[\mathrm{FeCl}_{4}\right]^{-}$and $\left[\mathrm{FeBr}_{4}\right]^{-}$exhibit LMCT bands at 220 and 244 nm respectively
[3]
ii) $\quad\left[\mathrm{CrO}_{4}\right]^{2-}$ and $\left[\mathrm{MoO}_{4}\right]^{2-}$ exhibit LMCT bands at 373 and 225 nm respectively
[3]
iii) $\quad\left[\mathrm{Fe}(\mathrm{bpy})_{3}\right]^{2+}$ is expected to exhibit an MLCT band rather than an LMCT band
[3]
b) The electronic spectra of $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Ni}\left(\mathbf{L}_{1}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathbf{L}_{2}\right)_{3}\right]^{2+}$ and $\left[\mathrm{Ni}\left(\mathrm{L}_{3}\right)_{6}\right]^{2+}$ show spin-allowed d-d absorption bands as shown in the table below.

| Complex | Absorption band positions $\left(\mathrm{cm}^{-1}\right)$ |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
|  | $\mathrm{v}_{1}$ | $\mathrm{v}_{2}$ | $\mathrm{v}_{3}$ |  |
| $\left[\mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ | 17400 | 25200 | 34500 |  |
| $\left[\mathrm{Ni}\left(\mathbf{L}_{1}\right)_{6}\right]^{2+}$ | 10750 | 17500 | 28200 |  |
| $\left[\mathrm{Ni}\left(\mathbf{L}_{2}\right)_{3}\right]^{2+}$ | 11000 | 18500 | 30000 |  |
| $\left[\mathrm{Ni}\left(\mathbf{L}_{3}\right)_{6}\right]^{2+}$ | 8500 | 14000 | 25000 |  |

i) $\quad \mathbf{L}_{1}, \mathbf{L}_{2}$ and $\mathbf{L}_{3}$ in Ni (II) complexes are three different ligands one of which is $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{NH}_{3}$ or en. Identify $\mathbf{L}_{1}, \mathbf{L}_{2}$ and $\mathbf{L}_{3}$. Explain your answer.
[5]
ii) Use the $\mathrm{d}^{8}$ Tanabe-Sugano diagram (attached) to identify the transitions that correspond to the bands ( $v_{1}, v_{2}, v_{3}$ ) belonging to $\mathrm{Ni}(\mathrm{II})$ complexes.
iii) Use the $\mathbf{d}^{8}$ Tanabe-Sugano diagram (attached) to identify the transitions that correspond to the bands ( $v_{1}, v_{2}, v_{3}$ ) belonging to V(III) aqua complex.
iv) Among the three $\mathrm{Ni}(I I)$ complexes, which one is expected to exhibit the most intense absorption bands? Explain your answer.
[2]

## Question Four

a) Complete and balance the following reactions:
i) $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons$

iii) $\mathrm{Fe}+\mathrm{I}_{2} \quad \longrightarrow$

[10]
b) Reaction of mercury(II) iodide, $\mathrm{HgI}_{2}$, with benzothiazole leads to the formation of a complex of formula $\mathrm{HgI}_{2} . \mathrm{L}_{2}$, where $\mathrm{L}=$ benzothiazole. The structure of benzothiazole is shown below. Give sketches of three isomers that the complex may exhibit. Which isomer is expected to be the most stable? Explain your answer.
[7]

c) The common minerals of copper and nickel contain copper sulphides and nickel sulphides. In contrast, aluminium is obtained from the oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, and calcium from the the carbonate, $\mathrm{CaCO}_{3}$. Can these observations be explained in terms of hardness? Explain. [4]
d) Of the metals cadmium, chromium, lead, strontium and palladium, which might be expected to occur in mineral form as oxides and which as sulphides, and which as oxides or sulphides? Explain

## Question Five

a) Define and give one example or illustration of each of the following
i) Anation reaction
ii) Self-exchange electron transfer reaction
b) Consider the reaction

$$
\mathrm{ML}_{\mathrm{x}} \mathrm{X}+\mathrm{Y} \longrightarrow \mathrm{ML}_{\mathrm{x}} \mathrm{Y}+\mathrm{X}
$$

where X is the leaving group and Y is the entering group. Use appropriate reaction equations to illustrate the two possible limiting mechanisms.

## [4]

c) Give expressions for the two principal sets of equilibrium constants ( $\mathrm{K}_{\mathrm{i}}$ 's and $\beta_{\mathrm{i}}$ 's) for the formation of a series of complexes $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{~L}\right]^{2+},\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L}_{2}\right]^{2+}$, and $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{L}_{3}\right]^{2+}$ (in aqueous solution) starting with $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$, where L is a monodentate neutral ligand. How are $\mathrm{K}_{\mathrm{i}}$ 's related to $\beta_{\mathrm{i}}$ 's for $\mathrm{i}=1,2,3,4$ ?
[15]

## Question Six

a) With the help of the "Decision Tree" which is provided, determine the point group for each of the following:
i)

ii) 1,5-dichloronaphthalene

iii) Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$

b) Consider trans- $\mathrm{N}_{2} \mathrm{~F}_{2}$. The molecule has a planar nonlinear structure as shown below. It belongs to the point group $\mathrm{C}_{2 \mathrm{~h}}$. [Note: The z axis is perpendicular to the xy plane which coincides with the molecular plane. Also the z axis coincides with $\mathrm{C}_{2}$ axis].



Let the two $N-F$ bond stretches ( $r_{1}$ and $r_{2}$ ) constitute one basis set and let the $N=N$ bond stretch ( $\mathrm{r}_{3}$ ) constitute another basis set. Now answer the questions that follow.
i) Determine the reducible representation arising from the basis set $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$. Then determine the symmetries of the corresponding stretching (N-F) vibrational modes
ii) Apply the same procedure as in i) to the basis set $\left(\mathrm{r}_{3}\right)$.
iii) Which of the bands are both IR active active and Raman active.
iv) Derive the SALCs for each of the vibrational modes in i) and ii) above, and sketch the results.

# Table of hard, intermediate and soft Acids and Bases 

|  |  |  |
| :---: | :---: | :---: |
| Hard; class (a) | $\begin{aligned} & \mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}, \mathrm{R}_{2} \mathrm{O},[\mathrm{OH}]^{-},[\mathrm{RO}]^{-},\left[\mathrm{RCO}_{2}\right]^{-} \\ & {\left[\mathrm{CO}_{3}\right]^{2-},\left[\mathrm{NO}_{3}\right]^{-},\left[\mathrm{PO}_{4}\right]^{3-},\left[\mathrm{SO}_{4}\right]^{2-},\left[\mathrm{ClO}_{4}\right]^{-},[\mathrm{ox}]^{2-}} \\ & \mathrm{NH}_{3}, \mathrm{RNH}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Be}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Sn}^{2+} \\ & \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Al}^{3+}, \mathrm{Ga}^{3+}, \mathrm{In}^{3+}, \mathrm{Sc}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{3+}, \\ & \mathrm{Y}^{3+}, \mathrm{Th}^{4+}, \mathrm{Pu}^{4+}, \mathrm{Ti}^{4+}, \mathrm{Zr}^{4+},[\mathrm{VO}]^{2+},\left[\mathrm{VO}_{2}\right]^{+} \end{aligned}$ |
| Soft; class (b) | $\mathrm{I}^{-}, \mathrm{H}^{-}, \mathrm{R}^{-},[\mathrm{CN}]^{-}$(C-bound), CO (C-bound), RNC , RSH, $\mathrm{R}_{2} \mathrm{~S},[\mathrm{RS}]^{-},[\mathrm{SCN}]^{-}$( $S$-bound), $\mathrm{R}_{3} \mathrm{P}, \mathrm{R}_{3} \mathrm{As}$, $\mathrm{R}_{3} \mathrm{Sb}$, alkenes, arenes | Zero oxidation state metal centres, $\mathrm{Tl}^{+}, \mathrm{Cu}^{+}, \mathrm{Ag}^{+}, \mathrm{Au}^{+}$, $\left[\mathrm{Hg}_{2}\right]^{2+}, \mathrm{Hg}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Pd}^{2+}, \mathrm{Pt}^{2+}, \mathrm{Tl}^{3+}$ |
| Intermediate | $\begin{aligned} & \mathrm{Br}^{-},\left[\mathrm{N}_{3}\right]^{-}, \mathrm{py},[\mathrm{SCN}]^{-} \text {(N-bound), } \mathrm{ArNH}_{2},\left[\mathrm{NO}_{2}\right]^{-}, \\ & {\left[\mathrm{SO}_{3}\right]^{-2}} \end{aligned}$ | $\mathrm{Pb}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Os}^{2+}, \mathrm{Ru}^{3+}, \mathrm{Rh}^{3+}, \mathrm{Ir}^{3+}$ |

## Character Table for $\mathbf{C}_{2 \mathrm{~h}}$ Point Group



## $\mathbf{d}^{8}$ Tanabe-Sugano Diagram



| PHYSICAL CONSTANTS |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Speed of light in a vacuum | $c_{0}$ | $2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ |
|  | Permittivity of a vacuum | $\epsilon_{0}$ | $8.854187816 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$ |
|  |  | $4 \pi \epsilon_{0}$ | $1.11264 \times 10^{-10} \mathrm{c}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ |
|  | Planck constant | $h$ | $6.6260755(40) \times 10^{-34} \mathrm{~J} \mathrm{~s}$ |
|  | Elementary charge | e | $1.60217733(49) \times 10^{-19} \mathrm{C}$ |
|  | Avogadro constant | $N_{\text {A }}$ | $6.0221367(36) \times 10^{23} \mathrm{~mol}^{-1}$ |
|  | Boltzmann constant | $k$ | $1.380658(12) \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ |
| - | Gas constant | $R$ | $8.314510(70) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ |
|  | Bohr radius | $a_{0}$ | $5.29177249(24) \times 10^{-11} \mathrm{~m}$ |
|  | Rydberg constant | $R_{\text {c }}$. | $1.0973731534(13) \times 10^{7} \mathrm{~m}^{-1}$ <br> (infinite nuclear mass) |
|  |  | $\checkmark R_{\mathrm{H}}$ | $1.09677759(50) \times 10^{7} \mathrm{~m}^{-1}$ (proton nuclear mass) |
|  | Bohr magneton | ${ }_{\pi}^{\mu_{\mathrm{B}}}$ | $\begin{aligned} & 9.2740154(31) \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1} \\ & 3.14159265359^{\circ} \end{aligned}$ |
|  | Faraday constant | F | $9.6485309(29) \times 10^{4} \mathrm{Cmol}^{-1}$ |
|  | Atomic mass unit | $m_{u}$ | $1.6605402(10) \times 10^{-27} \mathrm{~kg}$ |
|  | Mass of the electron | $m_{\text {e }}$ | $\begin{aligned} & 9.1093897(54) \times 10^{-31} \mathrm{~kg} \\ & \text { or } \\ & 5.48579903(13) \times 10^{-4} m_{u} \end{aligned}$ |
| . | Mass of the proton | $m_{p}$ | $1.007276470(12) m_{u}$ |
|  | Mass of the neutron | $m_{\mathrm{n}}$ | $1.008664904(14) m_{u}$ |
|  | Mass of the deuteron | $m_{\text {d }}$ | $2.013553214(24) m_{u}$ |
|  | Mass of the triton | $m_{\text {t }}$ | $3.01550071(4) m_{u}$ |
|  | Mass of the $\alpha$-particle | $m_{a}$ | $4.001506170(50) m_{u}$ |

## PERIODIC TABLE OF THE ELEMENTS

GROUPS

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PEAIODS | IA | "A | "İ | ive | vв | vib | vin |  | vili |  | 18 | ив | IIIA | NA | va | VIA | via | vila |
| 1 | $\xrightarrow{\substack{1.008 \\ H \\ \hline \\ \hline \\ \hline}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  | $\begin{aligned} & 9.012 \\ & \mathrm{Be} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  | ${ }^{120.11}$ | ${ }_{\text {\% }}^{14.007}$ | $1{ }^{15.999}$ |  |  |
| 3 | $\begin{array}{\|c} 22.990 \\ \mathrm{Na} \end{array}$ | $\begin{array}{r} 24305 \\ \mathbf{M g} \end{array}$ |  |  |  | RANS | TION | LEM | ENTS |  |  |  | ${ }_{\text {a }}^{\text {26.982 }}$ | ${ }^{20.0055} \boldsymbol{S i}^{20}$ | $5$ | ${ }^{32.06}$ | $\begin{aligned} & 35.453 \\ & \mathrm{Cl}^{3} \end{aligned}$ | ${ }^{39.948}$ |
| 4 | ${ }_{\text {3 }}^{39.983}$ | $\begin{gathered} 40.088 \\ \mathbf{C a} \\ \text { Ca } \end{gathered}$ | $\begin{aligned} & 4,956 \\ & S_{0}, \end{aligned}$ | $47.31$ | $\underset{\substack{50.9415 \\ \mathbf{v}}}{ }$ | $5^{5}$ | $\frac{54.938}{M \mathbf{n}}$ | $\begin{gathered} 5.5 .87 \\ \mathbf{F e}_{2} 96 \end{gathered}$ | $\begin{gathered} 58.933 \\ \mathbf{C o s o} \end{gathered}$ | $\stackrel{c}{5.69}_{\substack{58}}$ | $\begin{gathered} 63.546 \\ \mathrm{Cu} \end{gathered}$ | $\begin{aligned} & 65.39 \\ & \mathbf{Z n} \end{aligned}$ | $\begin{gathered} 6.9723 \\ \mathbf{G}, \end{gathered}$ | $\begin{aligned} & 7261 \\ & \mathbf{G e} \end{aligned}$ | $\begin{aligned} & 7.9292 \\ & \text { As } \end{aligned}$ | ${ }^{78.96}$ |  |  |
| 5 | $\begin{aligned} & 8.5488 \\ & \mathbf{R b b} \end{aligned}$ | ${ }^{87.62}$ | $\begin{array}{\|l\|} \hline 8.0 .06 \\ \mathbf{Y} \\ \hline \end{array}$ | $\stackrel{1.124}{\mathbf{9} \mathbf{Z 2 4}}$ | ${ }^{22.9064} \mathrm{Nb}$ | $\begin{aligned} & 4.959 \\ & \hline \mathbf{M o} \end{aligned}$ |  | $\begin{array}{\|l}  \\ \begin{array}{l} 10.107 \\ \mathrm{Ru} \end{array} \\ \hline \end{array}$ | $\begin{aligned} & 102906 \\ & \mathbf{R h} \end{aligned}$ | $\begin{aligned} & 106.42 \\ & \mathbf{P d} \end{aligned}$ | $\begin{gathered} 177.888 \\ A g \end{gathered}$ | $\begin{aligned} & { }^{11241} \\ & \mathrm{Cd} \end{aligned}$ | $\begin{aligned} & 14.82 \\ & 17 \\ & \hline 10 \end{aligned}$ | Sn | $\begin{gathered} { }^{121.75} \\ \mathbf{S b} \end{gathered}$ | $\begin{aligned} & \mid 127.60 \\ & \mathrm{Te} \end{aligned}$ | $\int_{I}^{129.904}$ | ${ }^{131.29}$ |
| 6 | $\begin{array}{\|cc} 1322005 \\ \mathrm{CS} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 13.73 \\ \hline \mathbf{B a} \\ \hline \end{array}$ | $\begin{array}{\|c} 133.006 \\ { }_{1} \mathbf{L} \mathbf{L} \end{array}$ | $\begin{aligned} & 177.49 \\ & \mathrm{Hf} \end{aligned}$ | $\begin{gathered} 180.046 \\ \mathbf{T a} \\ \hline \end{gathered}$ | $\stackrel{18885}{W}$ | $\begin{gathered} 186.207 \\ \mathbf{R e} \\ \mathbf{R e} \end{gathered}$ | $\begin{array}{r} 1902 \\ 0.2 \end{array}$ | $\begin{aligned} & 12222 \\ & \hline 18 \end{aligned}$ | $\begin{aligned} & 19.508 \\ & \mathrm{PPt}^{208} \end{aligned}$ | $\begin{gathered} \begin{array}{c} 19.967 \\ A u \end{array} \end{gathered}$ | $\begin{aligned} & 20.59 \\ & \mathrm{Hyg} \\ & \hline \end{aligned}$ | $\begin{gathered} 20.433 \\ \hline 11 \end{gathered}$ | $\begin{aligned} & 2072 \mathbf{P}^{2} \\ & \mathbf{P b} \end{aligned}$ | ${ }^{200.98}$ | ${ }^{(299)}$ | ${ }_{\text {cta }}^{120}$ | ${ }_{\substack{(222) \\ R n}}$ |
| 7 | $\begin{aligned} & \text { (223) } \\ & \mathrm{Fr} \end{aligned}$ | $\left[\begin{array}{l} 220.025 \\ \mathrm{Ra} \end{array}\right.$ | $\begin{aligned} & * 227) \\ & * * A C \end{aligned}$ | $\begin{aligned} & (211) \\ & \mathbf{R} \end{aligned}$ | $\begin{aligned} & 2622 \\ & \mathbf{1 2 5} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|l\|} \mathbf{U 3 3} h \end{array}$ | Uns |  | $\begin{gathered} \text { (266) } \\ \text { Une } \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  |

- Lanthanide serles
* Actinide series

| $\stackrel{140.115}{\mathrm{Ce}}$ | $\begin{gathered} 140.908 \\ \mathbf{P r} \end{gathered}$ | $\begin{aligned} & 144.24 \\ & \mathbf{N d} \end{aligned}$ | $\begin{aligned} & (145) \\ & \text { Pm } \end{aligned}$ | $\begin{aligned} & 150.36 \\ & \mathbf{S m} \end{aligned}$ | $\begin{aligned} & 151.96 \\ & \mathbf{E u} \end{aligned}$ | $\begin{aligned} & 157.25 \\ & \text { Gd } \end{aligned}$ | $\begin{gathered} 158.925 \\ \mathbf{T b} \end{gathered}$ | $\begin{aligned} & 162.50 \\ & \mathbf{D y} \end{aligned}$ | $\begin{gathered} 164.930 \\ \mathbf{H o} \end{gathered}$ | $\begin{aligned} & 167.26 \\ & \mathbf{E r} \end{aligned}$ | $\begin{gathered} 168.934 \\ \mathrm{Tm} \end{gathered}$ |  | ${ }^{174.967}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88 |  | * | 89\% ${ }^{2}$ | 20, |  |  |  |  |  |  |  | 108 | , |
| $\begin{gathered} \text { 232.038 } \\ \text { Th } \end{gathered}$ | $\begin{aligned} & 231.036 \\ & \mathbf{P a} \end{aligned}$ | $\begin{gathered} 238.029 \\ \mathbf{U} \end{gathered}$ | $\begin{gathered} 237.048 \\ \mathbf{N p} \end{gathered}$ | $\begin{aligned} & (244) \\ & \mathbf{P}_{11} \end{aligned}$ | $\stackrel{(243)}{\mathbf{A} \mathbf{m}}$ | (247) Cm | $\begin{aligned} & (247) \\ & \text { BK } \end{aligned}$ | (251) | $\begin{array}{r} (252) \\ \mathbf{E} \mathbf{S} \end{array}$ | ${ }^{(257)}$ | Md | (259) | ${ }_{\text {Li }}{ }^{(260)}$ |

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ${ }^{12} \mathrm{C}=e$ exactly 12 ;
hall-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

## DECISION TREE




[^0]:    "Marks will be awarded for method, clearly labelled diagrams, organization and presentation of thoughts in clear and concise language"

