UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013/14

TITLE PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME: THREE (3) HOURS
INSTRUCTIONS:
There are six (6) questions. Each question is worth 25 marks. Answer any four (4) questions.
A list of integrals, a data sheet, and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) Using blackbody experiment as an example, discuss the 'failure' of classical mechanics.
(b) The Schrödinger equation was derived from wave equation. What was Erwin Schrödinger's line of thinking?
(c) The rearranged Schrödinger equation for a free particle in a box is as follows:
$\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2 m E}{\hbar} \psi(x)=0 \quad 0 \leq x \leq a$
And the general solution is
$\psi(x)=A \cos k x+B \sin k x$, where $k=\frac{\sqrt{2 m E}}{\hbar}$
Show that the energy of a particle in a box is quantized.
(d) Evaluate $g=\hat{A} f$ where Â and f are given below:

\hat{A}	f
(i) SQRT	x^{2}
(ii) $\frac{d^{2}}{d x^{2}}$	$\cos w x$
(iii) $\frac{\partial}{\partial t}$	$x^{2} \exp (6 t)$

(e) In (d) above, which f is an eigen function of the operator given?

Question 2 (25 marks)

(a) Define photoelectric effect.
(b) Using photoelectric effect as an example, discus the particle character of electromagnetic radiation.
(c) When lithium is radiated with light, the kinetic energy (KE) of the ejected electrons is $2.935 \times 10^{-19} \mathrm{~J}$ for $\lambda=300.0 \mathrm{~nm}$ and $1.280 \times 10^{-19} \mathrm{~J}$ for $\lambda=400.0 \mathrm{~nm}$ Calculate the:
(i) Planck constant,
[3]
(ii) the threshold frequency, and
(iii) the work function of lithium from these data. [2]
(d) Explain the origin of spin-orbit coupling and explain how it affects the appearance of a spectrum.

Question 3 (25 marks)

(a) What is the Zeeman effect?
(b) How many lines appear in the Zeeman splitting of the $n=3, l=2$ level of the hydrogen atom?
(c) What is the lowest term symbol for Ti^{3+} if the first two (2) electrons are to be lost are the 4 s electrons?
(d) Distinguish between bonding and anti-bonding molecular orbitals
(e) Which of the following molecules may show infrared absorption spectra?
(i) N_{2}
(ii) $\mathrm{CH}_{3} \mathrm{Cl}$
[4].
(f) Explain why the $2 s$ and $2 p$ subshells are degenerate in the hydrogen atom but are not degenerate in many-electron atoms

Question 4 (25 marks)

(a) Sate the Heisenberg Uncertainty Principle. [4]
(b) The term symbol for a particular state is ${ }^{3} \mathrm{~F}_{2}$.
(i) What are the L, S, and J for this state? [3]
(ii) What is the minimum number of electrons which could give rise to this state?
(iii) Suggest a possible electron configuration [2]
(c) Normalize the function $\psi=\cos \theta, 0 \leq \theta \leq 2 \pi$
(d) Write the electronic configuration and calculate the bond order for the following species $N_{2}^{+}, N_{2}, N_{2}^{-}$
(e) Classify CCl_{4} as spherical, symmetric or asymmetric top

Question 5 (25 marks)

(a) Explain the difference between "hot band" and "overtone band" in infrared spectra. How would you distinguish the two experimentally?
(b) Discuss the significance of the Born-Oppenheimer approximation in quantum chemistry.
(c) Which of the following transitions are allowed and which are forbidden in a hydrogenlike atom? Explain
(i) $2 \mathrm{p} \rightarrow 5 \mathrm{~s}$,
(ii) $2 \mathrm{p} \rightarrow 3 \mathrm{p}$,
(iii) $2 \mathrm{~d} \rightarrow 3 \mathrm{~s}$
(d) Calculate the degeneracy of the term symbols derived from $1 s^{2} 2 s^{2} 2 p^{I} 3 d^{\prime}$

Question 6 (25 marks)

(a) Suppose that you wish to characterize the normal modes of benzene in the gas phase. Why is it important to obtain both infrared absorption and Raman spectra of your sample?
(b) The force constant of 1 H 19 F molecule is $966 \mathrm{~N} / \mathrm{m}$. Note: Isotopic masses are 1 H 1.0078 u and 19 F 18.9984 u].
(i) Calculate the zero point vibrational energy for this molecule
(ii) If this amount of energy were converted to translational energy, how fast would the molecule be moving?
(iii) Calculate the frequency of light needed to excite the molecule from the ground state to the first excited
(c) How many normal modes of vibration are there for the following molecules?
(i) $\mathrm{C}_{6} \mathrm{H}_{6}$,
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(iii) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(d) Define degeneracy

USEFUL INFORMATION IS GIVEN BELOW

$$
\int x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

$$
d \tau=r^{2} \sin \theta d \theta d \phi d r
$$

$$
\int x \sin ^{2} a x d x=\frac{x^{2}}{4}-\frac{x \sin 2 a x}{4 a}-\frac{\cos 2 a x}{8 a}
$$

$$
\int_{0}^{\pi} x \sin x d x=\frac{\pi^{2}}{2}
$$

$$
\int \sin ^{2} x d x=\frac{x}{2}-\frac{1}{4 a} \sin 2 a x
$$

$\int \sin a x \cos a x d x=\frac{1}{2 a} \sin ^{2} a x$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	,	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$\begin{aligned} & 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \times 10 \mathrm{~L} \mathrm{Torr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\hbar=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m_{c}	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{3} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{B}=\mathrm{e} \dagger / 2 \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \hbar / m_{e} e^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{-}=\mathrm{m}_{\mathrm{e}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (J)	1 erg
$1 \mathrm{eV}=$	\ddots	$=1 \times 10^{-7} \mathrm{~J}$
	$1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule

$\begin{array}{llllllllllll}\text { Prefixes } & f & p & n & \mu & m & c & d & k & M & G\end{array}$

| femto pico. nano micro milli | centi | deci | kilo | mega giga | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10^{-15} | 10^{-12} | 10^{-9} | 10^{-6} | 10^{-3} | 10^{-2} | 10^{-1} | 10^{3} | 10^{6} | 10^{9} |

PERIODIC TABLE OF ELEMENTS

