UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2013/2014

TITLE OF PAPER:	ADVANCED CHEMISTRY
COURSE NUMBER:	C401
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS.
	ANSWER ANY FOUR (4) QUESTIONS EACH QUESTION IS WORTH 25
	MARKS.

[^0]PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a) Write the formulae of the following compounds:
(i) Dicarbonyl- η^{5}-cyclopentadienyl $-\eta^{1}$-cyclopentadienyliron(II).
(ii) Dichlorobis(η^{5}-cyclopentadienyl)titanium(IV).
(b) (i) Describe the 18 -electron rule and explain its basis.
(ii) Define a metal cluster.
(iii) Give the electron count for each of the following species, and determine which of them obey the 18 -electron rule:
(1) Heptahaptocycloheptatrienyltricarbonylmolybdenum(I).
(2) $(\mathrm{CO}) \mathrm{Os}(\equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$
(c) Explain why $\mathrm{V}(\mathrm{CO})_{6}$ is easily reduced to the monoanion.
(d) (i) Considering the bonding in metal carbonyls, what factors would affect the $\mathrm{C}-\mathrm{O}$ stretching vibrations?
(ii) A carbonyl complex has linear OC-M-CO group. How will the CO stretching frequency change (increase, decrease or remain the same) under the following conditions? Justify your answers.
(1) One CO is replaced by triethylamine, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$:
(2) The complex acquires a positive charge
(3) The complex acquires a negative charge

QUESTION TWO

(a) Explain, with necessary orbital diagrams, how carbon monoxide, CO , which has negligible donor properties toward simple acceptors such as BF_{3}, can form strong bonds to transition metal atoms.
(b) Based on isolobal analogies, choose the organometallic fragments that might replace
(i) CH_{2}^{+}
(ii) CH^{-}
$\mathrm{Fe}(\mathrm{CO})_{4}, \mathrm{Mn}(\mathrm{CO})_{5}$, or $\operatorname{Re}(\mathrm{CO})_{4}$
$\begin{array}{ll}\text { (ii) } \mathrm{CH}^{-} \\ \text {(iii) } & \mathrm{CH}_{3}\end{array}$ $\mathrm{Ni}(\mathrm{CO})_{3}, \mathrm{Co}(\mathrm{CO})_{3}$, or $\mathrm{Mn}(\mathrm{CO})_{4}$
$\mathrm{CpCo}(\mathrm{CO}), \mathrm{Mn}(\mathrm{CO})_{5}$, or $\mathrm{Cr}(\mathrm{CO})_{6}$
(c) (i) Classify each of the following as closo, nido or arachno:
(1) $\mathrm{Rh}_{6}(\mathrm{CO})_{16}$
(2) $\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}$
(ii) Describe the structures of the above species.
(d) Predict the transition metal-containing products of the following reactions:
(i) $\mathrm{Mo}(\mathrm{CO})_{6}+\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CH}_{2}-\mathrm{PPh}_{2} \rightarrow$
(ii) $\quad \mathrm{H}_{3} \mathrm{C}-\mathrm{Mn}(\mathrm{CO})_{5}+\mathrm{SO}_{2} \rightarrow$ (no gases are evolved)
(iii) $\mathrm{Rh}(\mathrm{CO})_{3} \mathrm{Br}+\mathrm{H}_{2} \rightarrow$

QUESTION THREE

(a) Discuss briefly the two types of insertion reactions encountered in homogeneous catalysis.
(b) Explain the following observations:
(i) The ligand CO can be replaced from $\mathrm{Ni}(\mathrm{CO})_{4}$ by PF_{3} or SbCl_{3}, but no reaction occurs with PF_{5} or SbCl_{5}.
(ii) The ligand cyclohepta-1,3,5-triene is hexahapto when bonded to the $\mathrm{Cr}(\mathrm{CO})_{3}$ fragment, but only tetrahapto when bonded to the $\mathrm{Fe}(\mathrm{CO})_{3}$ fragment.
(c) Outline the mechanism for the alkene hydrogenation using $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ as the catalyst.

QUESTION FOUR

(a) Give two separation methods that can produce the pure elements with little contamination from the other lanthanides. Describe one in detail. [6]
(b) An empty, a half-filled and a completely filled 4 f electronic level is often said to confer stability on the oxidation state of a lanthanide ion. Cite examples which bear out this statement.
[3]
(c) (i) Which actinide element has the most stable +2 oxidation state?
(ii) Which actinide element forms a +3 ion with 7 electrons in the 5 forbital?
(iii) Name one actinide element that forms compounds in the +7 oxidation state.
(d) (i) Determine the number of unpaired electrons in Er^{3+}.
(ii) Derive the ground state-term symbol for Er^{3+}, and calculate its magnetic moment.
(iii) Write the formula of one lanthanide metal ion whose magnetic moment can be calculated by the spin-only formula.
(e) (i) Which actinide isotope(s) is/are obtained in macroscopic amounts?
(ii) What are the main principles upon which the separation of Np, Pu and Am from U are made?

QUESTION FIVE

(a) Describe the main types of interhalogen compounds giving examples of each. [6]
(b) Predict the products of the following reactions of interhalogens:
(i) $\mathrm{ICl}+\mathrm{KI} \rightarrow$
(ii) $\mathrm{ClF}_{3}+\mathrm{SbF}_{5} \rightarrow$
(iii) $\mathrm{IF}_{5}+\mathrm{CsF} \rightarrow$
(c) Based on the analogy between halogens and pseudohalogens, write the balanced equation for the probable reaction of
(i) cyanogens, $(\mathrm{CN})_{2}$ with aqueous hydroxide.
(ii) cyanide ion, (CN) with lead ion, $\left(\mathrm{Pb}^{2+}\right)$.
(d) Draw the structure and write an equation for the preparation for each of the following compounds:
(i) I_{3}^{+}
(ii) BrF_{5}
[10]
(e) The interhalogen, $\mathrm{I}_{2} \mathrm{Cl}_{6}$ exists as a dimer in the solid state.
(i) Write a balanced equation for the preparation of this compound.
(ii) $\mathrm{I}_{2} \mathrm{Cl}_{6}$ undergoes dissociation on warming to room temperature. Write the reaction for the dissociation process.

QUESTION SIX

(a) Name two common impurities in solvents and indicate how they can be removed.
(b) (i) Use the HSAB theory to predict which of the following pairs of adducts should be the more stable:
(1) $\left[\mathrm{Fe}\left(\mathrm{NMe}_{3}\right)_{6}\right]^{3+}$ or $\left[\mathrm{Fe}\left(\mathrm{SbMe}_{3}\right)_{6}\right]^{3+}$
(2) BeI_{2} or BeF_{2}
(ii) Select the best answer and give the basis for your selection.
(1) Strongest acid: $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ or $\mathrm{H}_{2} \mathrm{Te}$
(2) Stronger base: $\quad \mathrm{NF}_{3}$ or NH_{3}
[8]
(c) Consider each of the following solvents:
(I) Ammonia, $\mathrm{NH}_{3} \quad$ (II) Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$
(III) Sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
(i) Give equations for autoionisation of the pure solvents.
(ii) Give appropriate equations to show what will happen if $\mathrm{CH}_{3} \mathrm{COOH}$ is dissolved in
(1) NH_{3}
(2) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
(d) (i) State the Bronsted-Lowry definition of acids and bases.
(ii) State the Lewis definition of acids and bases and write two equations that illustrate it, including one that involves a protonic acid.
(e) Predict whether the equilibrium constants for the following reactions should be greater than 1 (reaction lies to the right) or less than 1 (reaction lies to the left):
(i) $\mathrm{CdI}_{2}+\mathrm{CaF}_{2} \leftrightarrows \mathrm{CdF}_{2}+\mathrm{CaI}_{2}$
(ii) $\left[\mathrm{CuI}_{4}\right]^{2+}+\left[\mathrm{CuCl}_{4}\right]^{3-} \leftrightarrows\left[\mathrm{CuCl}_{4}\right]^{2-}+\left[\mathrm{CuI}_{4}\right]^{3-}$

PERIODIC TABLE OF ELEMENTS

() indicates the mass number of the isotope with the longest half-life.

[^0]: A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

