UNIVERSITY OF SWAZILAND FINAL SUPPLEMENTARY EXAMINATION 2013/14

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:
THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED
GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) The equilibrium $\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C}$ at $25^{\circ} \mathrm{C}$ is subjected to a temperature jump that slightly increases the concentrations of B and C . The measured relaxation time is $3.0 \mu \mathrm{~s}$. The equilibrium constant for the system is 2.0×10^{-16} at $25^{\circ} \mathrm{C}$, and the equilibrium concentrations of B and C are both $2.0 \times 10^{-4} \mathrm{M}$. Calculate the rate constants for he forward and reverse steps.
(b) The rate constant for the decomposition of a certain substance is $1.70 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 24 ${ }^{\circ} \mathrm{C}$ and $2.01 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $37^{\circ} \mathrm{C}$. Determine the Arrhenius parameters for the reaction. (Arrhenius equation; $k=A e^{-E_{a} / R T}$).
(c) The rate constant for the first order decomposition of a compound A in the reaction $\mathrm{A} \rightarrow \mathrm{P}$ is $\mathrm{k}=3.56 \times 10^{-3} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$.
(i) What is the half-life of A ?
(ii) What will be the pressure after 50 s of reaction if the initial pressure was 33.0 kPa .
(d) The following chain mechanism has been proposed for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$ $2 \mathrm{HCl}(\mathrm{g})$ which occurs when a gas mixture of hydrogen and Chlorine is exposed to light with wavelength $<480 \mathrm{~nm}$.
Initiation $\mathrm{Cl}_{2}+\mathrm{hv} \longrightarrow 2 \mathrm{Cl} \cdot \quad \mathrm{v}=\mathrm{I}_{a}$
Propagation: $\quad \mathrm{Cl} \cdot+\mathrm{H}_{2} \xrightarrow{k_{1}} \mathrm{HCl}+\mathrm{H} \cdot$

$$
\mathrm{H} \cdot+\mathrm{Cl}_{2} \xrightarrow{k_{2}} \mathrm{HCl}+\mathrm{Cl} \cdot
$$

Termination $\mathrm{Cl} \cdot \xrightarrow{k_{3}} 1 / 2 \mathrm{Cl}_{2}$ (on wall)
Use the steady state approximation method to show that the rate law is independent of $\left[\mathrm{Cl}_{2}\right]$, but is first order with respect $\left[\mathrm{H}_{2}\right]$ and with respect to I_{a}.

Question 2 (25 marks)

(a) Why is it not possible to measure γ_{+}for Na^{+}?
(b) Express $\gamma_{ \pm}$in terms of γ_{+}and γ_{-}for $\mathrm{K}_{3} \mathrm{PO}_{4}$
(c) Use the Debye-Huckel limiting law to calculate the mean activity coefficient, $\gamma_{ \pm}$, for a $0.0250 \mathrm{~mol} \mathrm{~kg}^{-1}$ solution of AlCl_{3}.
(d) Devise a cell in which the following reaction occurs:
$\mathrm{Pb}(\mathrm{s})+\mathrm{Hg}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{Hg}(l)$
What is its potential when the electrolyte is saturated with both salts at $25^{\circ} \mathrm{C}$?
(e) Consider the following cell at 298 K :
$\mathrm{Pt}(\mathrm{s})\left|\mathrm{Mn}^{2+}(\mathrm{aq}, a=0.0150), \mathrm{Mn}^{3+}(\mathrm{aq}, a=0.200)\right| \mathrm{Zn}^{2+}(\mathrm{aq}, a=0.100) \mid \mathrm{Zn}(\mathrm{s})$
(i) write the half reactions and the cell reaction
(ii) Calculate the cell potential, E .
(iii) Calculate the equilibrium constant of the cell reaction at 298 K .

Question 3 (25 marks)

(a) Distinguish between physisorption and chemisorption
(b) A surface is half covered by a gas when the pressure is 1.0 atm . If the Langmuir isotherm, $\theta=\frac{K p}{1+K p}$, is followed:
(i) What is the value of the adsorption coefficient, K ?
(ii) What pressure would give 90% coverage?
(iii) What coverage is given by a pressure of 0.10 atm ?
(c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, θ $=k p^{1 / n}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid] $\mathrm{mol} / \mathrm{L}$	0.05	0.10	0.50	1.0	1.5
$\mathrm{~W}_{\mathrm{a}} / \mathrm{g}$	0.04	0.06	0.12	0.16	0.18

W_{a} is the mass adsorbed per unit mass of charcoal.

Question 4 (25 marks)

(a) Estimate the magnitude of the diffusion controlled rate constant at 298 K for a species in concentrated sulphuric acid which has a viscosity of $2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.
(b) The reaction $\mathrm{A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{P}$ has a rate constant given by the empirical expression $\mathrm{k}_{2}=$ $8.72 \times 10^{12} \mathrm{e}^{-6134 \mathrm{~K} / \mathrm{T}} \mathrm{L} \mathrm{mol} \mathrm{l}^{-1} \mathrm{~s}^{-1}$. Evaluate (i) $\Delta^{\ddagger} \mathrm{H}$, (ii) $\Delta^{\ddagger} \mathrm{S}$ and (iii) $\Delta^{\ddagger} \mathrm{G}$.
(c) At $25^{\circ} \mathrm{C}, \mathrm{k}=1.55 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$ at an ionic strength of 0.0241 for a reaction in which the rate determining step involves the encounter of two singly charged cations. Use the Debye -Huckel limiting law to estimate the rate constant at zero ionic strength.

Question 5 (25 marks)

(a) The charge of Mg^{2+} is twice that of Na^{+}, and from the equation

$$
\begin{equation*}
u=\frac{z e}{6 \pi \eta a} \tag{3}
\end{equation*}
$$

one might therefore expect $\mathrm{Mg}^{2+}(\mathrm{aq})$ to have a much greater mobility than $\mathrm{Na}^{+}(\mathrm{aq})$. Actually, these ions have similar mobilities. Explain why?
(b) Derive the Ostwald dilution law for a weak electrolyte (all steps must be clearly shown).

$$
\begin{equation*}
\frac{1}{\Lambda_{m}}=\frac{1}{\Lambda_{m}^{0}}+\frac{\Lambda_{m} c}{K_{a}\left(\Lambda_{m}^{0}\right)^{2}} \quad \text { Ostwald dilution law } \tag{4}
\end{equation*}
$$

(c) The following data were obtained for a weak electrolyte HA in ethanol at $25^{\circ} \mathrm{C}$:

Concentration $\mathrm{c} /$ mol dm $^{-3}$	1.566×10^{-4}	2.600×10^{-4}	6.219×10^{-4}	10.441×10^{-4}
Conductivity $\mathrm{\kappa} / \mathrm{S} \mathrm{cm}^{-1}$	1.788×10^{-6}	2.418×10^{-6}	4.009×10^{-6}	5.336×10^{-6}

(i) Confirm that these values are in accordance with the Ostwald dilution law.
(ii) Calculate the dissociation constant for this electrolyte.
(d) For the perchlorate ion, ClO_{4}^{-}, in water at $25^{\circ} \mathrm{C}, \lambda_{m}^{0}=67.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.
(i) Calculate the mobility, \mathbf{u}, of ClO_{4}^{-}in water
(ii) Calculate the drift speed, \mathbf{s}, of ClO_{4}^{-}in water in a field of 24 V/cm.
(iii) Calculate the diffusion coefficient of ClO_{4}^{-}in water
(iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is $8.91 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.
[10]

Question 6 (25 marks)

(a) The standard cell potential of the cell, $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HBr}(\mathrm{aq})|\mathrm{AgBr}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})$, was measured over a range of temperatures and the data were found to fit the following polynomial, $E_{\text {cell }}^{\theta} / \mathrm{K}=0.07131-4.99 \times 10^{-4}(\mathrm{~T} / \mathrm{K}-298)-3.45 \times 10^{-6}(\mathrm{~T} / \mathrm{K}-298)^{2}$.
(i) Write the cell reaction
(ii) Evaluate $\Delta_{r} G^{\theta}, \Delta_{r} S^{\theta}$ and $\Delta_{r} H^{\theta}$ for the cell reaction at $298 \ddot{K}$.
(b) The relative permittivity of methanol corrected for density variation is given below. Calculate the dipole moment and polarizability volume of the molecule. Take $\rho=0.791 \mathrm{~g}$ cm^{-3} at $20^{\circ} \mathrm{C}$.

$\theta /{ }^{\circ} \mathrm{C}$	-80	-50	-20	0	20
ε_{r}	57	49	42	38	34

[Useful equation $\mathrm{P}_{\mathrm{m}}=\frac{\mathrm{N}_{\mathrm{A}}}{3 \varepsilon_{0}}\left(\alpha+\frac{\mu^{2}}{3 \mathrm{kT}}\right) \quad$ where $\left.\mathrm{P}_{\mathrm{m}}=\left(\frac{\varepsilon_{r}-1}{\varepsilon+2}\right) \frac{\mathrm{M}}{\mathrm{\rho}}\right]$
(c) Provide a molecular interpretation for the observation that the viscosity of a gas increases with temperature whereas the viscosity of a liquid decreases with increasing temperature.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$\begin{aligned} & 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \mathrm{X} \mathrm{No}^{-3} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \times 10 \mathrm{~L} \mathrm{Torr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant ${ }^{\text { }}$	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\dagger=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-11} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{d}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\begin{aligned} & \varepsilon_{0}=1 / c^{2} \mu_{0} \\ & 4 \pi \varepsilon_{0} \end{aligned}$	$\begin{aligned} & 8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \\ & 1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \end{aligned}$
Vacuum permeability	μ_{0}	$\begin{aligned} & 4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{r}^{-1} \mathrm{~m}^{3} \end{aligned}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} h / 2 \mathrm{~m}_{\text {c }}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	$g e$	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \mathrm{~h} / \mathrm{m}_{e} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{*}=\mathrm{m}_{0} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms} \mathrm{~s}^{2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

GROUPS

*Lanthanide Scrics
**Actinide Scries

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Cc	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	66	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Tl	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isolope with the longest half-life.

