UNIVERSITY OF SWAZILAND

FINAL SUPPLEMENTARY EXAMINATION 2013/14

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE **SIX** QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER **ANY FOUR** QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) The equilibrium $A \Rightarrow B + C$ at 25 °C is subjected to a temperature jump that slightly increases the concentrations of B and C. The measured relaxation time is 3.0 µs. The equilibrium constant for the system is 2.0 $\times 10^{-16}$ at 25 °C, and the equilibrium concentrations of B and C are both 2.0 $\times 10^{-4}$ M. Calculate the rate constants for he forward and reverse steps. [8]
- (b) The rate constant for the decomposition of a certain substance is $1.70 \times 10^{-2} \text{ M}^{-1} \text{s}^{-1}$ at 24 °C and 2.01 $\times 10^{-2} \text{ M}^{-1} \text{s}^{-1}$ at 37 °C. Determine the Arrhenius parameters for the reaction. (Arrhenius equation; $k = Ae^{-E_a/RT}$). [6]
- (c) The rate constant for the first order decomposition of a compound A in the reaction $A \rightarrow P$ is k= 3.56 x10⁻³ s⁻¹ at 25 °C.
 - (i) What is the half-life of A?
 - (ii) What will be the pressure after 50 s of reaction if the initial pressure was 33.0 kPa.

[5]

(d) The following chain mechanism has been proposed for the reaction H₂(g) + Cl₂(g) → 2 HCl(g) which occurs when a gas mixture of hydrogen and Chlorine is exposed to light with wavelength < 480 nm.</p>

Initiation $Cl_2 + hv \longrightarrow 2 Cl \cdot v = I_a$

Propagation: $Cl \cdot + H_2 \xrightarrow{k_1} HCl + H \cdot$

 $H \cdot + Cl_2 \xrightarrow{k_2} HCl + Cl \cdot$

Termination $Cl \xrightarrow{k_3} \frac{1}{2} Cl_2$ (on wall)

Use the steady state approximation method to show that the rate law is independent of $[Cl_2]$, but is first order with respect $[H_2]$ and with respect to I_a . [6]

Question 2 (25 marks)

(a)	Why is it not possible to measure γ_+ for Na ⁺ ?	[2]
(b)	Express γ_{\pm} in terms of γ_{+} and γ_{-} for K ₃ PO ₄	[3]
(c)	Use the Debye-Huckel limiting law to calculate the mean activity coefficient, γ_{\pm} a 0.0250 mol kg ⁻¹ solution of AlCl ₃ .	, for [5]
(d)	Devise a cell in which the following reaction occurs: $Pb(s) + Hg_2SO_4(s) \rightarrow PbSO_4(s) + 2 Hg(l)$	

What is its potential when the electrolyte is saturated with both salts at $25 \degree C?$ [5]

2

Consider the following cell at 298 K:

$$Pt(s)|Mn^{2+}(aq, a = 0.0150), Mn^{3+}(aq, a = 0.200)|Zn^{2+}(aq, a = 0.100)|Zn(s)|$$

- write the half reactions and the cell reaction (i)
- Calculate the cell potential, E. (ii)
- Calculate the equilibrium constant of the cell reaction at 298 K. [10] (iii)

Question 3 (25 marks)

(a)	Distinguish between physisorption and chemisorption	[8]
(b)	A surface is half covered by a gas when the pressure is 1.0 atm. If t isotherm, $\theta = \frac{Kp}{1-K^2}$, is followed:	the Langmuir

otherm,
$$\theta = \frac{1}{1+Kp}$$
, is followed:

- What pressure would give 90% coverage? (ii)
- (iii) What coverage is given by a pressure of 0.10 atm? [2]
- The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, θ (c) $= kp^{1/n}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid] mol/L	0.05	0.10	0.50	1.0	1.5
W_{a}/g	0.04	0.06	0.12	0.16	0.18

 $W_{a}\xspace$ is the mass adsorbed per unit mass of charcoal.

[9]

[2]

Question 4 (25 marks)

Estimate the magnitude of the diffusion controlled rate constant at 298 K for a species (a) in concentrated sulphuric acid which has a viscosity of $2.7 \times 10^{-2} \text{ kg m}^{-1} \text{ s}^{-1}$.

[5]

- The reaction $A^- + H^+ \rightarrow P$ has a rate constant given by the empirical expression $k_2 = 8.72 \times 10^{12})e^{-6134K/T} L \text{ mol}^{-1}\text{s}^{-1}$. Evaluate (i) $\Delta^{\ddagger}H$, (ii) $\Delta^{\ddagger}S$ and (iii) $\Delta^{\ddagger}G$. [15] (b)
- At 25 °C, $k = 1.55 \text{ dm}^6 \text{ mol}^{-2} \text{ min}^{-1}$ at an ionic strength of 0.0241 for a reaction in (c) which the rate determining step involves the encounter of two singly charged cations. Use the Debye -Huckel limiting law to estimate the rate constant at zero ionic strength. [5]

3

(e)

Question 5 (25 marks)

(a) The charge of Mg^{2+} is twice that of Na^+ , and from the equation

 $u = \frac{ze}{6\pi\eta a}$

one might therefore expect $Mg^{2+}(aq)$ to have a much greater mobility than $Na^{+}(aq)$. Actually, these ions have similar mobilities. Explain why? [3]

(b) Derive the Ostwald dilution law for a weak electrolyte (all steps must be clearly shown).

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda_m^0} + \frac{\Lambda_m c}{K_a (\Lambda_m^0)^2} \qquad \text{Ostwald dilution law} \qquad [4]$$

(c) The following data were obtained for a weak electrolyte HA in ethanol at 25° C:

Concentration c/ mol dm ⁻³	1.566 x 10 ⁻⁴	2.600 x 10 ⁻⁴	6.219 x 10 ⁻⁴	10.441 x 10 ⁻⁴
Conductivity $\kappa/S \text{ cm}^{-1}$	1.788 x 10 ⁻⁶	2.418 x 10 ⁻⁶	4.009 x 10 ⁻⁶	5.336 x 10 ⁻⁶

[8]

- (i) Confirm that these values are in accordance with the Ostwald dilution law.
- (ii) Calculate the dissociation constant for this electrolyte.

(d) For the perchlorate ion, ClO_4^- , in water at 25 °C, $\lambda_m^0 = 67.2 Scm^2 mol^{-1}$.

- (i) Calculate the mobility, \mathbf{u} , of ClO_4^- in water
- (ii) Calculate the drift speed, s, of ClO_4^- in water in a field of 24 V/cm.
- (iii) Calculate the diffusion coefficient of ClO_4^- in water
- (iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is 8.91 x 10⁻⁴ kg m⁻¹ s⁻¹.

Question 6 (25 marks)

- (a) The standard cell potential of the cell, $Pt|H_2(g)|HBr(aq)|AgBr(s)|Ag(s)$, was measured over a range of temperatures and the data were found to fit the following polynomial, $E_{cell}^{\theta}/K = 0.07131-4.99 \times 10^{-4} (T/K - 298) - 3.45 \times 10^{-6} (T/K - 298)^2$.
 - (i) Write the cell reaction
 - (ii) Evaluate $\Delta_r G^{\theta}$, $\Delta_r S^{\theta}$ and $\Delta_r H^{\theta}$ for the cell reaction at 298 K. [10]

4

(b) The relative permittivity of methanol corrected for density variation is given below. Calculate the dipole moment and polarizability volume of the molecule. Take $\rho = 0.791$ g cm⁻³ at 20 °C.

÷

	θ/ °C	-80	-50	-20	0	20	
	E _r	57	49	42	38	34	
Useful e	quation $P_m =$	$\frac{N_A}{3\epsilon_0} (\alpha$	$+\frac{\mu^2}{3kT}$	whe	re P _m =	$=\left(\frac{\varepsilon_r-1}{\varepsilon+2}\right)$	$\left[\frac{M}{\rho}\right]$ [10]

(c) Provide a molecular interpretation for the observation that the viscosity of a gas increases with temperature whereas the viscosity of a liquid decreases with increasing temperature.

[5]

5

General data and fundamental constants

¥

. .

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{\star}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	NA	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	บ	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 1 ⁰⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10^{-10} J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5,050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\star} = m_s e^4/8h^3 c \epsilon_s^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	· ·	
of free fall	g	9.806 65 m s_1^2
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (. 2 X 10 ⁻¹		1 erg 1 eV/n	nolecul	e	-	1 X 10 96 48:) ^{,7} J 5 kJ mol			
Prefixes	f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10 ⁻⁹	µ micro 10 ⁻⁶		c centi 10 ⁻²	d deci 10 ⁻¹	k kilo 10 ³	M mega 10 ⁶	G giga 10 ⁹		
2									, <u>.</u> .,			

PERIODIC TABLE OF ELEMENTS

.

				,				G	ROUPS		. •							
ļ	1	2	3	4	5	б.	7	8	9	10	11	12	13	14	15	16	17	18
ERIODS	ι۸	11/	IIIB	IVB	·VB	, VIB	VIIB		VIIIB		IB	IIB	IIIA ·	IVA	VA	VIA	- VIIA	VIIIA
	1.008							٠	•						×			4.003
• 1	II																•	lle 2
	6.941	9.012	1								Atomi	ic mass —	L 10 811	12.011	14.007	15.999	18.998	20.180
2	0.941 Li	Be										nbol –	B	C	N	0	F	-Ne
		4							•			ic No.	F 5	6	7	8	9	.10
	22.990	24:30:5										•	26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				א גוידי	SITION	t et en	ENTO				AI	23.080 Si ·	P	S2.00	EI EI	Ar
5	11	12				IKAN	SITO	(TOTON	ENIS				13	14	15	16	17	18
·	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69 *	63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	· 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba.	*La	Hf	Ta	W	Rc	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55 223	56 226.03	57 (227)	72 (261)	73 (262)	74 (263)	75 (262)	76 (265)	77 (266)	78 (267)	.79	80	81	82	. 83	84	85	86
7	Fr	Ra	**Ac	Rf	(202) Ha	Unh	Uns	Uno	Une	Uun			·					
(87	88	89	104	105	106	107.	108	109	110								
L		, l			•									>				
			ſ	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167-26	168.93	173.04	174.97	
. *La	nthanid	le Series	5	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	- Er	Ţm	Yb	Lu	
58 59					59	60	61	62	63	64	65	66 .	. 67	68	69	70	71	
**;	Actinide	e Series	-	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
•				Th	Pa	U	Np	Pu -	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	

() indicates the mass number of the isotope with the longest half-life.

. ۲

.