UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATIONS ACADEMIC YEAR 2014/2015

TITLE OF PAPER: INTRODUCTORY INORGANIC CHEMISTRY

COURSE NUMBER: C201

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS:

Ne

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

the second of the

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

		-							
a)	Give ar	n explanation for each of the following:							
	i)	The Bohr theory applies to Be^{3+} but not to Be^{2+} .	(1)						
	ii)	A wave function $f_1 = \psi$ has the same physical significance as its negative	$f_2 = -\psi.$						
	iii)	The ionization energy of a Cu atom is smaller than that of a Cu^{2+} ion.	(2)						
b)	Consid axis, <u>sl</u> phosph [Ne]3s	er a diatomic molecule, PN, of phosphorus nitride. Taking the z axis as th <u>ketch molecular orbitals described below</u> , arising from overlap of atomi torus with those on nitrogen. [The electronic configuration of a phosphoru ${}^{2}3p^{3}$, while that of nitrogen is [He]2s ² 2p ³].	e internuclear c orbitals on s atom is						
	i)	A bonding sigma (σ) molecular orbital (mo) from the overlap of an s orb phosphorus with an s orbital on nitrogen.	ital on						
		prooprior ao manana o oronan on minogeni	(2)						
	ii)	A bonding sigma mo arising from overlapping of a \mathbf{p} orbital on ph with a suitable \mathbf{p} atomic orbital on nitrogen.	osphorus (2)						
	iii)	Two pi (or π) mo's, <u>one bonding and another anti-bonding</u> , both arising of a d orbital on phosphorus with a suitable p atomic orbital on nitrogen	from overlap						
c)	Descril	be how BeCl ₂ remedies its electron deficiency through polymerization							
			(7)						
d)	Give reasons why compounds of Li are more covalent than those of the rest of group 1 elements. (5)								
		Question Two							
a)	Consider the 4f series of elements (in the periodic table) whose lightest member has $Z=58$ and contains one electron in the 4f sub-shell; the heaviest member of the series has a full 4f subshell. Use the above information to answer the questions that follow.								
	i)	Give the electron configuration of the lightest member of the serie rare gas notation for the inner electrons].	s. [Use the						

1.5

- ii) How many elements will be there in the series? Explain briefly.
- iii) Give the electronic configuration(s) of the atom(s) with maximum number of unpaired electrons.

(9)

- b) A selenium atom has the electronic configuration $[Ar]3d^{10}4s^24p^4$. Calculate the effective nuclear charge for an electron
 - i) in a 4p orbital of Se
 - ii) in a 3d orbital of Se
- c) Sketch the angular functions corresponding to the following orbitals:
 - i) $3dz^2$ ii) 3dxz

Question Three.

- a) Using valence orbitals only (and neglecting 3d orbitals), draw a molecular orbital energy level diagram of the molecule, A₂, where each atom, A, has 3s and 3p orbitals as its valence orbitals. Use the diagram to answer the associated questions that follow below. (6)
 - i) Give the ground-state electron configurations and calculate the bond orders of S_2 , P_2 , and Cl_2 . (9)

ii) Predict the order of increasing bond strength for the species in (i) above.

(2)

(10)

(6)

- iii) Figure out whether any of the species in (i) above are expected to be paramagnetic. (3)
- b) Consider a molecule $H_2C=CH_2$. Use a suitable orbital diagram to illustrate how suitable atomic orbitals overlap to form a π (pi) bond. Draw two orbital diagrams, one corresponding to a **bonding interaction** and another corresponding to an **anti-bonding interaction**. (5)

Question Four

a) Suggest explanations for the following:

8.0

i)	The group 2 elements are smaller than the corresponding group 1 elements.	
ii)	M ⁴⁺ ions are difficult to form for group 13 elements.	(3) (3)
iii)	Li^+ (0.76Å) and Mg^{2+} (0.72Å) have similar ionic radii and react with dinitro similar manner.	ogen, N ₂ , in a (4)
iv)	Be(OH) ₂ is amphoteric whereas Ba(OH) ₂ is basic.	(5)
v)	When an aqueous solution of NaOH is added to a solution of $AlCl_3$, a precip which dissolves in excess base. (4)	pitate appears
vi)	The molecule PCl_5 is known and is stable whereas the molecule NCl_5 is not	known. (6)

Question Five

a) Draw the Lewis structure of each of the molecules given below. In each case, give the hybridization of the central atom. (12)

i) $[IF_6]^+$ ii) BrF₅

- b) The p_{π} - p_{π} bond between C and O is stronger than Si and O. Why? (3)
- c) Describe the bonding in B₂H₆ and Al₂Cl₆ both of which have structures that contain two bridging atoms (10)

Question Six

a) Write the Born-Haber cycle for the formation of $CaF_2(s)$ from the elements in their standard states. Given the following information, calculate the lattice energy.

Enthalpy of sublimation	+172 kJmol ⁻¹			
Ionization energy of Ca(g) to Ca ²⁺ (g)	+1640 "			
Enthalpy of dissociation of $F_2(g)$ to $2F(g)$	+165 "			
Electron affinity of F(g) to F(g)	-328 "			
Enthalpy of formation (ΔH_f^{o}) of $CaF_2(s)$	+1200 "			

(11)

b) Complete and balance the equation for each of the following:

i) $CsF + IF_7 \rightarrow$

1.2

ii) Reaction involved in extraction of Br₂ from brine solution

iii) The reaction of P_4O_{10} with water

- iv) SiCl₄ + H₂O \rightarrow
- v) $CaF_2 + H_2SO_4 \rightarrow$
- vi) $SO_3 + H_2O \rightarrow$

vii) $CaH_2 + H_2O \rightarrow$

(14)

opool of again a factories	.: "0	2.5575215036120 44
Permittivity of a vacuum	ϵ_0	8.854187816 x 10 ⁻¹² F m ⁻¹
-	$4\pi\epsilon_0$	$1.11264 \times 10^{-10} c^2 N^{-1} m^{-2}$
Planck constant	h	6.6260755(40) x 10 ⁻³⁴ J s
Elementary charge	e	1.60217733(49) x 10 ⁻¹⁹ C
Avogadro constant	$N_{\rm A}$	6.0221367(36) x 10 ²³ mol ⁻¹
Boltzmann constant	k	1.380658(12) x 10 ⁻²³ J K ⁻¹
Gas constant	R	8.314510(70) J K ⁻¹ mol ⁻¹
Bohr radius	<i>a</i> ₀	5.29177249(24) x 10 ⁻¹¹ m
Rydberg constant	R _c .	$1.0973731534(13) \times 10^7 {\rm m}^{-1}$
		(infinițe nuclear mass)
	✓ R _H	1.096777 x 10^{7} m ⁻¹
Bohr magneton	$\mu_{\mathbf{p}}$	9.2740154(31) x 10 ⁻²⁴ J T ⁻¹
	π	3.14159265359 *
Faraday constant	. , F	9.6485309(29)x10 ⁴ Cmol ⁻¹
Atomic mass unit	m"	$1.6605402(10) \ge 10^{-27} \text{ kg}$
Mass of the electron	m, `	9.1093897(54) x 10 ⁻³¹ kg
	```	or 5.48579903(13) x 10 ⁴ m
Mass of the proton	. 717	1.007276470(12) m
Mass of the neutron	m	1.008664904(14) m
Mass of the deuteron	m.	2.013553214(24) m
Mass of the triton	b.r.	3.01550071(4)
Mass of the aparticle	""t	4 001506170(50) m
mass of the a-particle	, <i>111</i> a	4.0010001/0(00) mu
	Permittivity of a vacuum Planck constant Elementary charge Avogadro constant Boltzmann constant Gas constant Bohr radius Rydberg constant Atomic mass unit Mass of the electron Mass of the neutron Mass of the neutron Mass of the deuteron Mass of the deuteron	Permittivity of a vacuum $\epsilon_0$ $4\pi\epsilon_0$ Planck constanthElementary chargeeAvogadro constant $N_A$ Boltzmann constantkGas constantRBohr radius $a_0$ Rydberg constant $R_c$ V $R_H$ Bohr magneton $\mu_B$ $\pi$ Faraday constant $F$ Atomic mass unit $m_u$ Mass of the electron $m_e$ Mass of the neutron $m_n$ Mass of the deuteron $m_d$ Mass of the deuteron $m_d$ Mass of the $\alpha$ -particle $m_{\alpha}$

••

.

**`**.

à...

## **Slater's Rules:**

1) Write the correct electron configuration for the atom and organize the orbitals into groupings as follows:

(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p), etc

2) Any electrons to the right of the electron of interest contributes zero to shielding.

3) All other electrons in the same grouping (or same principal quantum number,  $\mathbf{n}$ ) as the electron of interest shield to an extent of 0.35 nuclear charge units

4) If the electron of interest is an *s* or *p* electron:

All electrons with one less value (n-1) of the principal quantum number shield to an extent of 0.85 units of nuclear charge. All electrons with two less values (n-2) of the principal quantum number shield to an extent of 1.00 units.

5) If the electron of interest is an d or f electron:

1.2

All electrons to the left shield to an extent of 1.00 units of nuclear charge.

6) Sum the shielding amounts from steps 2 through 5 and subtract from the nuclear charge value to obtain the effective nuclear charge:

 $Z_{eff} = Z - S$ 

where

 $Z_{eff} = effective nuclear charge$ 

Z = atomic number

S = shilelding constant

PERIODIC TABLE OF THE ELEMENTS																		
GROUPS																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIOD	s IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII		ΙB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H		_														4.003 He	
2	6.941 Li	9.012 Be											10.811 B	' 12.011 C	14.007 N	15.999 O	18.998 F	20.180 Ne
3	22.990 Na	24.305 Mg		26.982 28.0855 30.9738 32.06 35.453   Al Si P S Cl   TRANSITION ELEMENTS 15.453 16.413 15.453												39.948 Ar		
4	39.0983 <b>K</b> 19	40.078 Ca 20 54	44.956 Sc 121-43	47.88 Ti	50.9415 V 23	51.996 Cr 24	54.938 Mn 1725 14	55.847 Fe	58.933 Co	58.69 . <b>Ni</b>	63.546 Cu	65.39 Zn	69.723 Ga	72.61 Ge	74.922 As	78.96 Se	79.904 Br 35	83.80 Kr 36
5	85.468 Rb	87.62 Sr	88.906 Y	91.224 Zr	92.9064 Nb	95.94 <b>Mo</b>	98.907 Tc	101.07 Ru	102.906 Rh	106.42 Pd	107.868 Ag	112.41 Cd	114.82 In	118.71 Sn	121.75 Sb	127.60 Te	126.904 I 53.42	131.29 Xe
6	132.905 Cs	137.33 Ba	138.906 *La	178.49 <b>Hf</b>	^{160.948} Ta	183.85 W	186,207 <b>Re</b>	190.2 Os	192.22 Ir	195.08 Pt	196.967 Au	200.59 Hg	204.383 TI	207.2 Pb	208.980 Bi	(209) Po	(210) At	(222) Rn 1861
7	(223) Fr	226.025 Ra	(227) **Ac	(261) Rf	(262) Ha	(263) Unh	(262) Uns	(265) Uno 108	(266) Une						4			
* Lanthanide series				140.115 Ce	140.908 Pr	144.24 Nd	(145) Pm	150.36 Sm	151.96 Eu	157.25 Gd	158.925 Tb	162.50 Dy	164,930 <b>Ho</b>	167.26 Er	168.934 Tm	173.04 Yb	174.967 Lu	
** Actinide series				232.038 Th	231.036 Pa	238.029 U	237.048 Np	(244) Pu 1947	(243) Am	(247) Cm	(247) Bk	(251) Cf	(252) Es	(257) Fm	(258) Md	(259) No 10220	(260) Lr	

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of  ${}^{12}C =$  exactly 12; ( ) indicates the mass number of the isotope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

言語語語を読みたいた