UNIVERSITY OF SWAZILAND

FINAL EXAMINATION

ACADEMIC YEAR 2014/2015

TITLE OF PAPER:	INORGANIC CHEMISTRY
COURSE NUMBER:	C301
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND OTHER TABLES HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

"Marks will be awarded for method, clearly labelled diagrams, organization and presentation of thoughts in clear and concise language"

Question One

a) Give the IUPAC name for each of the following:

- i) Mo(CO)₆
- ii) $[Mn(NH_3)_6][Co(CN)_6]$
- iii) $[Co(urea)_6](ClO_4)_3$
- iv) $(\eta^{5}-C_{5}H_{5})_{2}Ti(OCH_{2}CH_{3})_{2}$

[6]

b) Give the formula of each of the following:

- i) Potassium tetrabromocuprate(II)
- ii) Iodoaquabis(ethylenediamine)cobalt(III) nitrate
- iii) Carbonatopentaamminecobalt(III) chloride
- c) State the type of isomerism that may be exhibited by the following sixcoordinate complexes, and draw structures of the isomers:
 - i) $Ru(py)_3Cl_3$
 - ii) Ru(bpy)₂Cl₂

[13]

Question Two

- a) The first charge transfer band for [MnO₄]⁻ occurs at 18320 cm⁻¹ and that for [MnO₄]⁻² at 22940 cm⁻¹. Explain the origin of these absorption bands, and comment on the trend in relative energies on going from [MnO₄]⁻ to [MnO₄]²⁻
 [6]
- b) Suggest one reasonable structure for each of the following complexes
 - i) $[TiO(acac)_2]_2$, dimeric.
 - ii) $[(C_6F_5NCH_2CH_2)_3N]V$
- c) Give an explanation for the fact that the complex {[CoNH₃)₆]₂{[CoCl₄]₃ has a room temperature magnetic moment of 3.71 BM. [Help: the compound is made up of two complex ions, one of which has a net charge of +3]
 [6]
- d) The treatment of an aqueous solution of NiCl₂ with two equivalents of $H_2NCH_2CH_2NH_2$ gives a blue complex (μ_{eff} 3.30 BM) which, on heating, loses two H_2O molecules per formula unit to form a yellow, diamagnetic compound. Suggest explanations for these observations.

[7]

[6]

Question Three

- a) Comment on the following statements concerning electronic spectra
 - i) [OsCl₆]³⁻ and [RuCl₆]³⁻ exhibit LMCT bands at 282 and 348 nm respectively [5]
 - ii) $[Fe(bpy)_3]^{2+}$ is expected to exhibit an MLCT band rather than an LMCT band

[4]

- b) Using hard-soft concepts, which of the following reactions are predicted to have an equilibrium constant greater than 1? Briefly explain each of your answers.
 - i) $R_3PBBr_3 + R_3NBF_3 \rightleftharpoons R_3PBF_3 + R_3NBBr_3$
 - ii) CH₃HgI + HCl ≠CH₃HgCl +HI
 - iii) $[AgCl_2]^2 + 2CN^2(aq) \rightleftharpoons [Ag(CN)_2]^2 + 2Cl^2$

[6]

c) The diagram below shows the splitting in an octahedral complex of the ${}^{3}F$ and ${}^{3}P$ terms arising from a d² configuration. Thus the ${}^{3}F$ term splits into ${}^{3}T_{1g}$, ${}^{3}T_{2g}$ and ${}^{3}A_{2g}$ terms. On the other hand the ${}^{3}P$ term is transformed into a ${}^{3}T_{1g}$ term. Due to term interaction (non-crossing rule), the ${}^{3}T_{1g}(F)$ term is lowered by x, and the ${}^{3}T_{1g}(P)$ term is raised by x. The electronic spectrum of $[V(H_2O)_6]^{3+}$, a d² octahedral complex, shows peaks at 17400, 25200 and 34500 cm⁻¹. Use the diagram below to assign the peaks and calculate the values of x, Δ_0 and the Racah parameter B, assuming all the three peaks arise from d-d transitions.

[10]

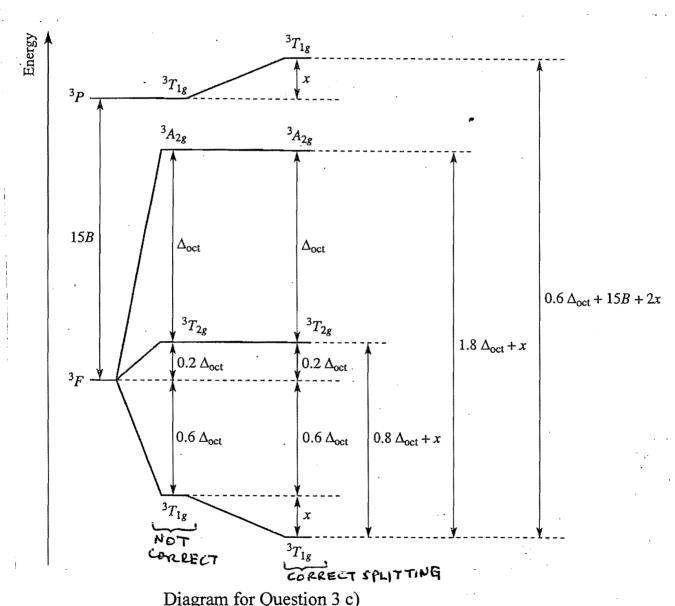


Diagram for Question 3 c)

4

Question Four

₽

Complete and balance the following reactions:

 $[CrO_4]^{2}(aq) + H^{+}(aq)$

a)

b)

i)

(in excess) $Cr + O_2$ ____ ii) $W + O_2 \xrightarrow{\Delta} Mn + O_2$ iii) iv) [8] Draw one possible geometry for each of the following: $[Mo(CN)_7]^{4-}$ i) æ CuCN, coordination no. =2ii) iii) $VF_5(s)$, coordination no. =6 [6]

c) Explain each of the following:

- i) TiCl₄ fumes when it is exposed to a moist atmosphere
- ii) $[MnCl_6]^{2-}$ is unstable whereas $[MnF_6]^{2-}$ is quite stable
- iii) CrO₃ is strongly oxidizing whereas WO₃ is very weakly oxidizing

[6]

d) Explain why Cu(I) compounds are diamagnetic irrespective of the coordination environment of the Cu(I) ion. However, they may exhibit colour, depending on the nature of the ligand

[5]

5

Question Five

- a) Define and give one example or illustration of each of the following
 - i) Inner-sphere redox reaction mechanism
 - ii) Outer-sphere redox reaction mechanism
- b) Consider the reaction

c)

[8]

 $ML_nX + Y \longrightarrow ML_nY + X$

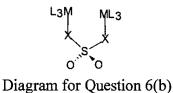
where X is the leaving group and Y is the entering group. Use appropriate reaction equations to illustrate the two possible limiting mechanisms and sketch reaction profiles for each of the reaction pathways. The diagrams should be labeled, indicating reactants, intermediates (if any), etc. [14]

With the help of the flow-chart which is provided, determine the point group for the following:

Boric acid, B(OH)₃

[3]

Question Six


a) With the help of the flow-chart which is provided, determine the point group for each of the following:

i) C₈H₈

[6]

b) The complex ion, $[L_6M_2(\mu-X_2SO_2)^{2-}$, has four strong peaks in the IR spectrum, in the region between 900 and 1200 cm⁻¹. Two of the peaks are assigned to S-X stretching modes and the other two are assigned to S-O stretching modes. Show that these data are consistent with the " μ -X₂SO₂"group having C_{2v} symmetry.

[13]

c) From b) above, derive SALC's for S-O stretching modes and sketch the modes

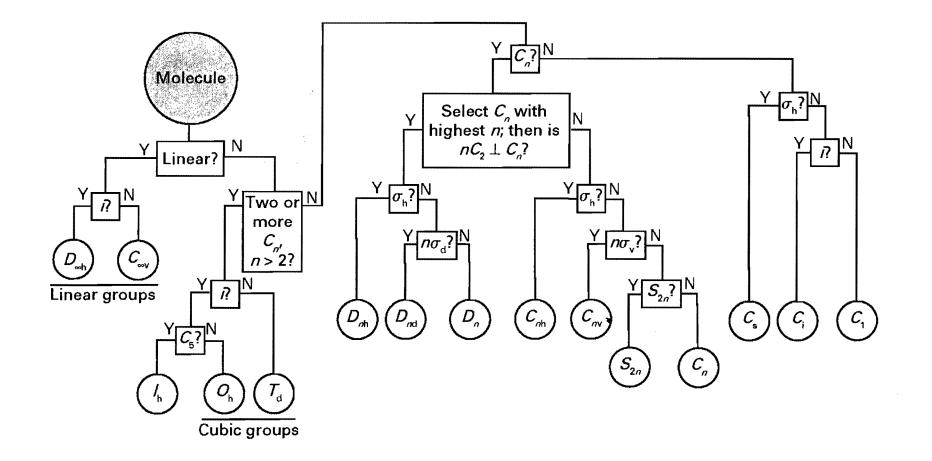
`[6]

PERIODIC TABLE OF THE ELEMENTS

			` •					GF	OUPS	S'					•		- · ·	
,	1	2	3	4	5	6	7	8	9	10	11	12	13	14.	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII	• .	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H								,									4.003 He 2
2	6.941 Li	9.012 Be 4											10.811 B	12.011 C	14.007 N	15.999. O 8	18.998 F 9	20.180 Ne
3	22.990 Na	24.305 Mg		TRANSITION ELEMENTS							26.982 Al	28.0855 Si	30.9738 P 15	32.06 S 16	35.453 Cl	39.948 Ar 18		
4	^{39.0983} K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.9415 V	51.996 Cr	54.938 Mn 25	55.847 Fe 26	58.933 Co	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78,96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92,9064 Nb	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd	107.868 Ag 47	112.41 Cd 48	114.82 In 49.49	118.71 Sn	121.75 Sb	127.60 Te 52	126.904 I 53	131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56	138.906 *La	178.49 Hf 72	180.948 Ta	183.85 W	186.207 Re 75	190.2 OS	192.22 Ir	195.08 Pt	196.967 Au 79	200.59 Hg 80	204.383 TI 8130	207.2 Pb	208.980 Bi	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra	(227) **Ac 89	(261) Rf 104	(262) Ha 1105	(263) Unh 106	(262) Uns	(265) Uno 108	(266) Une 109		v							

140.115 Ce	140.908 Pr 59	144.24 Nd	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.925 Tb	162.50 Dy 66	164.930 Ho	167.26 Er 68	168.934 Tm	173.04 Yb 70	174.967 Lu 71
232.038 Th	231.036 Pa	238.029 U	237.048 Np	(244) Pu 94	(243) Am	(247) Cm 96	(247) Bk 97	(251) Cf 98	(252) Es 99	(257) Fm 100	(258) Md	(259) No 102	(260) Lr 103

* Lanthanide series


** Actinide series

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of $^{12}C = exactly 12$; () indicates the mass number of the isotope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

*

The flow-chart (Decision tree) used for assigning point groups

. *	C_{2v}	Ε	<i>C</i> ₂	$\sigma_v(xz)$	$\sigma'_{v}(yz)$		
	$\begin{array}{c} \\ A_1 \\ A_2 \end{array}$	1 1	1 1	1 1	1 -1	z R.	x^2, y^2, z^2 xy
	B_1	1	-1	1	-1	x, R,	xz
	B ₂	1	-1	-1	1	y, R_x	уz
الا موجوع می ا ^ر میرد. ای	- 1				1		•
	•	·			•.		
	· · ·						
				A di a	•		
						·	
					· · ·		
and a star of the		tęć, e		·			
- 		· · · · ·	. . .		÷		
		م رومین م ادرونی	549 e .	•			
	• •• • • •				· · · · ·		
			. •		·		
			•				
			. •	- •			

Q. 6.

EXAMPLES OF HARD, SOFT & BORDERLINE ACIDS & BASES

1, ,

£.

Type of Acid/Base	EXAMPLES
	H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Sn ²⁺
Hard acids	Al ³⁺ , Ga ³⁺ , In ³⁺ , Cr ³⁺ , Co ³⁺ , Fe ³⁺ , Ir ³⁺ , La ³⁺ , Si ⁴⁺ , Ti ⁴⁺ , Zr ⁴⁺ , Th ⁴⁺ , VO ²⁺ , UO ₂ ²⁺
	BeMe ₂ , BF ₃ , BCl ₃ , B(OR) ₃ , AIMe ₃
	Cu ⁺ , Ag ⁺ , Au ⁺ , Hg ⁺ , Cs ⁺ , Tl ⁺ , Hg ²⁺ , Pd ²⁺ , Cd ²⁺ , Pt ²⁺
Soft acids	
	Metal atoms in zero oxidation states
Border line	Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Pb^{2+} , B(CH ₃) ₃ , SO ₂ ,
acids	NOt, BB13
Hard bases	H ₂ O, OH ⁻ , F ⁻ , Cl ⁻ , CH ₃ CO ₂ -, PO ₄ ³⁻ , SO ₄ ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻ ,
naro Dases	ClO ₄ ⁻ , ROH, RO ⁻ , R ₂ O, NH ₃ , RNH ₂ , N ₂ H ₄
Cafe hans -	RSH, RS ⁻ , R ₂ S, I ⁻ , CN ⁻ , SCN ⁻ , S ₂ O ₃ ⁻ , R ₃ P, R ₃ As (RO) ₃ P,
Soft bases	RNC, CO, C₂H₄, C₅H₅, R⁻, H⁻
Border line bases	Aniline, pyridine, N_3^- , Br^- , NO_2^- , SO_3^{2-} , N_2

From http://www.adichemistry.com/inorganic/cochem/hsab/hard-soft-acid-base-theory.html