UNIVERSITY OF SWAZILAND

÷:

I

JULY 2015 SUPPLEMENTARY EXAMINATION

TITLE OF PAPER	:	Analytical Chemistry II: Fundamentals of Spectrophotometry
COURSE NUMBER	:	C304
TIME	:	3 HOURS
Important Information	:	1. Each question is worth 25 marks.
		2. Answer <u>ALL</u> questions in SECTION A and any other
		THREE (3) in SECTION B
		3. Marks f or <u>ALL</u> procedural calculations will be awarded.
		4. Start each question on a fresh page of the answer sheet.
		5. Diagrams must be large and clearly labelled accordingly.
		6. This paper contains an appendix of chemical constants
		7. Additional material: graph paper and data sheet

You are not supposed to open this paper until permission has been granted by the chief invigilator

SECTION A- MULTIPLE CHOICE [25Marks]

Instruction: Write the letter of choice next to the question number in this section. Show calculations and give explanations where stated.

1. Beer's Law (or the Beer Lambert Law) is

(2)

(2)

(a) a linear relationship between the intensity of a UV absorbance and the concentration

of the analyte.

(b) an inverse relationship between the IR stretching frequency and the energy of light.

(c) used to calculate the chemical shift (δ) of an NMR resonance relative to that of the

tetramethylsilane standard.

(d) used to derive a molecular formula from the mass-to-charge ratio of an analyte.

2. Which one of the following compounds is expected to have the longest wave length absorbance (λ max)? Explain choice

(1)

3. Which structure is most consistent with the following infrared spectrum?

4. The wavenumber of a transition is 2000 cm^{-1} . In what part of the electromagnetic spectrum does this come? (2)

(a) Microwave

(b)Ultraviolet-visible (c) I

(c) Infrared (d) Radiowave

5. The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? (Show Calculation) (2)

(a) $180\ 000\ \text{cm}^{-1}$ (b) 560 nm (d) 5.6×10^{-6} (e) $5.6 \times 10^{-8}\ \text{m}$

2

6. Compound Z absorbs light of wavelength 320 nm. A 1.0×10^{-3} mol dm⁻³ solution of a compound Z gives an absorbance reading of 0.15 when placed in a solution cell of path length 1 cm. What is the value of the molar extinction (absorption) coefficient of Z? (Show calculation) (2)

(a) $150 \text{ dm}3 \text{ mol}^{-1} \text{ cm}^{-1}$ (b) $1.5 \times 10^{-4} \text{ mol dm}^{-3} \text{ cm}^{-1}$ (c) $1500 \text{ dm}^{3} \text{ mol}^{-1} \text{ cm}^{-1}$

(2)

(2)

(d) $15 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$

7. Which of the following statements is correct?

(a) Microwave radiation possesses more energy than infrared radiation.

(b) Infrared radiation has a shorter wavelength than visible light.

(c) Infrared radiation has a lower wavenumber than visible light.

(d) Ultraviolet radiation has a longer wavelength than infrared radiation.

8. A copper(II) sulfate solution of unknown concentration is placed in a colorimeter and an absorbance reading of 0.46 is recorded. Using the same solution cell, a 0.055 M solution of copper(II) sulfate gives an absorbance reading of 0.34. What is the concentration of the first solution? (Show calculation)

a) 0.041 mol dm⁻³ b) 0.35 mol dm⁻³ c) 8.60×10^{-3} mol dm⁻³ d) 0.074 mol dm⁻³

9. In reverse phase chromatography	, the stationary phase is made	(1)
	/	

a) non-polar

b) polar

c) either non-polar or polar

d) none of these

10. Which of the following detectors give concentrat	ion-dependent signals ?	- (1)
a) Electron-capture detector	b) Thermal conductivity	

c) Infra-red detector d)All of these

11. A solid sample is being extracted into a solvent in a round bottom flask. Following extraction, the solids are filtered, put back into a round bottom flask and extracted a second time. The concentrations of the analytes from both extractions in this case can be used to test: (1) a) extraction precision b) extraction efficiency c) extraction time needed d) all of the above (1) 12. Which of the following is not a step in atomic absorption spectroscopy (AAS)? a) Particles are adsorbed onto a stationary phase b) A solution is vaporised. c) A calibration curve is constructed. d) Atoms absorb light. 13. In HPLC column efficiency is measured in terms of number of plates which is; (1) a) inversely related to the square of the peak width b) directly related to the square of the peak width c) inversely related to the cube root of the peak width d) directly related to the square of the peak width

14. A sample was placed into a spectrophotometer, and it was found that the light reaching the detector at 450nm was exactly 75% the intensity of the light reaching the detector when a blank was placed in the spectrophotometer. What is the absorbance of the sample? Show working.

a) 1.845 b) -0.125 c) 0.347 d) 0.125

e) My answer is not listed

15. In many countries, fish with more than 0.500ppm mercury is considered unsafe. In oneexperiment, a 0.750g piece of tuna was appropriately treated and made up to 10.0mL solution.This solution returned an absorbance of 0.70. Using the calibration graph below, what can beconcluded from this analysis? (Show working)(3)

- a) The tuna does not contain mercury.
- b) The concentration of mercury is exactly equal to 0.500ppm and may or may not be safe to eat
- c) The concentration of mercury in the tuna is greater than 0.500ppm and it should not be eaten.
- d) The concentration of mercury in the tuna is less than 0.500ppm and it can be eaten safely.

SECTION B

Instruction: Answer any three (3) questions from this section

QUESTION 1[25 Marks]

- a) State the light source for AAS. Explain how it works, including why a different lamp must
 be used for each element [7]
- b) A major breakthrough in atomic absorption spectrophotometry was the invention of graphite furnace AA.
 - What is the major difference between flame AA and graphite furnace AA? Use diagrams to support your answer. [3]
 - ii) Identify the physical stages involved in the furnace program and describe the processes that occur during each stage. [3]
 - iii) Outline three (3) advantages of graphite furnace AA over flame AA [3]
- c) An internal standard in analytical chemistry is a chemical substance that is added in a constant amount to samples, the blank and calibration standards in a chemical analysis. The method of internal standards is used to improve the precision of quantitative analysis.
 - i) Give three characteristics of a "good" internal standard. [3]
 - ii) In ICP-MS analysis, choose one internal standards; Bi, Sc or In for each of the following analytes; Cd, Pb and Cr and explain why you chose as you did? [3]
 - iii) Explain why an internal standard can be used for ICP-AES but is not used for AAS[3]

QUESTION 2 [25 Marks]

- a) What are the desirable characteristics of a GC detector? [4]
- b) The retention of a compound in GC is determined by how much time a substance spends in the mobile phase versus the stationary phase. Explain three (3) factors which affect the retention of a substance in GC. [3]
- c) Sodium in tap water was analysed by flame emission spectroscopy using a simple flame photometer utilising a butane/air flame. The following calibration graph was produced.

	i)	Why does the graph slope down at high concentrations?	[2]
	ii)	What can be done, if anything, to get a straight line for the calibration?	[2]
	iii)	The inset shows a zoom of the low concentrations. Why does this show a negative	e
		deviation from a straight line calibration?	[2]
	iv)	What can be done to remedy, if anything, this part of the calibration graph?	[2]
	v)	Spectral interference can be a real problem in emission techniques, however in t	his 、
		scenario we don't have to worry about spectra interference; why?	[3]
d)	State B	eer's Law as applied to spectroscopy, and explain all terms appearing in it.	[3]
	i) Wha	t is meant by "stray light" in spectroscopy?	[1]
	ii) Use	equations to explain why stray light leads to negative deviations from Beer's Law	[3]

QUESTION 3 [25 Marks]

a)	a) Differentiate between "Spectroscopy" and "Spectrometry"						
b)	For a spectroscopic band occurring at 1685 cm ⁻¹ ,						
	i) Convert to energy in joules	[1]					
	ii) State in which region of the electromagnetic spectrum the band falls	[1]					
	(iii) State the kind of transition expected in this region	[1]					

7

c)	Explai	n using diagrams, why atomic spectra appear as lines, whereas molecular spectra					
	appear	as bands	[5]				
d)	With respect to Ca explain chemical interference in flame atomic absorption spectrometry						
	and ex	plain how it is eliminated.	[4]				
e)	In 2003	l, the Swaziland Water Services Corporation acquired a new atomic spectrometer					
	called	Liberty 110 ICP.					
	(i)	What does ICP stand for?	[1]				
	(ii)	Draw the ICP torch and label its components	[4]				
	(iii)	Concisely explain why chemical interferences are less common in ICP-AES than t	hey				
		are in flame AAS.	[2]				
	(iv)	List and describe each of the three (3) advantages that ICP has over flame atomi	с				
		absorption spectroscopy	[3]				

QUESTION 4 [25 MARKS]

- a) UV/Vis spectroscopy is routinely used in analytical chemistry for the quantitative determination of different analytes, such as transition metal ions and biological macromolecules. For a particular assay, your plot of absorbance versus concentration is not linear. Explain the possible reasons for this.
- b) What criteria should be used to choose an appropriate wavelength at which to make
 absorbance measurements in UV-visible spectroscopy? Why is that choice important? [4]
- c) Explain the difference between electromagnetic radiation in the UV and visible ranges. How does quantitative spectroscopy using the UV range differ from that using the visible range?
- d) Considering a typical spectrophotometer, what is the effect of decreasing the exit slit width of the monochromator on the light incident to the sample? [3]

[5]

e) Consider the reactions of two unknown compounds X and Y.

$$X + 2H_2 \rightarrow C_5H_{12}$$
$$Y + 2H_2 \rightarrow C_5H_{12}$$

Deduce the molecular formula of the two unknown compounds [2]
 The UV spectra of the compounds are compared to pent-1-ene in the table below.

Compound λ_{max} X 176

Y	211

Pent-1-ene 178

ii)	Draw the structures of compounds X and Y and explain the choice of structure fo	r
	each.	[5]

f) Which of the molecules oxygen and hydrogen chloride is IR active and why? [2]

QUESTION 5 [25Marks]

 $\left\{ \int_{-\infty}^{\infty} \right\}$

-

a)	Why is the injection port of a GC at a higher temperature than the oven temperature?	[2]
b)	Why must sugars and fatty acids be derivatized before GC analysis while pesticides and	
	aroma compounds need not be derivatized.	[3]
c)	What is solid-phase extraction and why is it advantageous over traditional liquid-liquid	
	extraction? Give three (3) advantages.	[5]
d)	What is a guard column and why is it used?	[3]
e)	What is the separation principle in Size Exclusion Chromatography?	[2]
f)	In HPLC what do you understand by Isocratic and Gradient elution?	[3]
g)	Which is the most commonly used detector in High Performance Liquid Chromatograph	y
	and why?	[3]
h)	What are the main differences between High Performance Liquid Chromatography and	Gas
	Chromatography? Give four (4)	[4]

DEPARTMENT OF CHEMISTRY

.

1	2	3	Д	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
H																	He
1.007	9																4.0026
3	4]										5	6	7	8	9	10
Li	Be											В	С	M	0	F	Ne
6.941	9.0122											10.311	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	· S	CI	Ar
22.990	24.305	<u> </u>		.				•		·····		26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	25	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
.39.098	40.078	44.956	47.83	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	l	Xe
85.46	8 87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	105.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	14f	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	l 137.33	138.91	178.49	180.95	183.95	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(?)	(?)							

.

Periodic Table of the Elements

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ithal	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Lar	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	152.50	164.93	167.26	168.93	173.04	174.97
						•								
sa	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Coniii	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

PHYSICAL CONSTANTS AND UNITS

Table 1 : General Physical Constants								
Constant	Symbol	SI Units	Non-SI Units					
Velocity of Light	C ·	2.9979 × 10 ⁸ m s ⁻¹						
Electronic charge	е	-1.6022 × 10 ⁻¹⁹ C						
Avogadro's constant	N _A	$6.0220 \times 10^{23} \text{ mol}^{-1}$						
Atomic mass unit	u	1.6606×10^{-27} kg						
Electron rest mass	m _e	9.1095×10^{-31} kg	•					
Proton rest mass	m _p	1.6726×10^{-27} kg						
Neutron rest mass	mn	1.6750×10^{-27} kg						
Planck's constant	h	6.6262×10^{-34} J s						
Rydberg constant	R _H	$1.0974 \times 10^7 \text{ m}^{-1}$						
Ideal gas constant	R	8.314 J mol ⁻¹ K ⁻¹	0.08206 atm mol ⁻¹ K ⁻¹					
Gas molar volume (STP)	V _o	$2.21414 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$	22.4 l mol ⁻¹					
Boltzmann constant	k	1.3807×10^{-23} J K ⁻¹						
Faraday constant	F	96485 C mol ⁻¹						
Gravitational acceleration	g	9.80 m s ⁻²						
Permittivity of a vacuum	ε	$8.8542 \times 10^{-12} \text{ F m}^{-1}$						
Mechanical equivalent of heat		1 calorie \equiv 4.18 J						

Table 2: IR Correlation table for common functional groups

Functional group	band (cm ⁻¹)	
–CH₃	2950–75 (s), 2870–90 (m), 1440–65 (m), 1370–90 (s)	
-CH ₂ (acyclic)	291040 (s), 284080 (m), 144080 (m), ~720 (w)	
–CH	2880–90 (w), ~1340 (w)	
-C=CH ₂	2970-3070 (m), 1290-1420 (w), 860-900 (w)	
-CH=CH- (cis)	675730 (m)	
-CH=CH- (trans)	960–70 (m)	
-C=C-	1620–80 (m)	
Aryl-H	3010-80 (m), 1000-1250 (w), 700-900 (m)	
Aryl C=C	1590–1620 (v), 1575–90 (v), 1470–1525 (v), 1430–65 (v),	
	400–625 (m)	
–C≡C–H	~3300-40 (s), 700-900 (m)	
C≡C	2100–2250 (v)	
water	~3700	
water of crystallisation	3100-3700	
0-Hifree,	~3600 (V)	
O–H (intermolecular H-bond)	3200-3500 (s)	
O–H (intramolecular H-bond)	3400–3600 (s)	
O-H	1260–1400 (s)	
СОН	1020–1200 (s)	
Aryl-OH	~3600 (m), 1180–1390 (s), 600–700 (s)	
COO–H (dimer)	2500–3300 (s)	
COO-H (chelated)	2500–2700 (s)	
C–O–C (all kinds)	1050–1250 (v)	
N-H	3200–3500 (m), 1500–1600 (s), 650–900 (s)	
CN	1020–1200 (m)	
C(=O)N-H (amide)	32003400 (s), ~1450 (s), 15901650 (m)	
C-F	1000–1400 (s)	
C–Cl	600–800 (s)	
CBr	500–750 (s)	
C1	~500 (s)	
NO ₂	1660–1490 (s), 1390–1260 (s)	
C=N	~2250 (s)	

· ·

Table 3: IR Correlation table for carbonyl groups

.

Functional group	Туре	band (cm ⁻¹) (all strong
		absorptions)
RC(=0)R'	saturated aliphatic	1715-45
ketones	aryl	1650-1700
	α - β unsaturated	1660-1700
	cyclobutanone	~1780
	cyclopentanone	~1750
	αhalo	173050
	β-diketone (enol form)	1580-1640
RC(=0)H	sat aliphatic	1720-40
aldehydes	α-β unsat	1685–1705
	aryl	1685–1715
	β-keto (enol form)	1645-70
	α-halo	173065
СООН	sat. aliphatic (dimer)	1700-25
carboxylic acids	sat. aliphatic (monomer)	1740-1800
	aryl (dimer)	1680–1710
	α-βunsat	1690-1715
	a halo (dimer)	1715-40
	H-bonded (intramolecular)	1650-80
	anion	1550–1610, 1300–1420
C(=0)-O-C=O	sat aliphatic	1800–40, 1740–80
acid anhydrides	α-β unsat, aryl	1780–1830, 1710–55
C(=O)X	X = Cl sat aliphatic	1790-1815
acid halides	$X = Cl \alpha - \beta$ unsat, aryl	1735–50, 1765–90
COOR	sat aliphatic	1725-50
Esters	α - β unsat, aryl	1705-40
	RCOOC=C	1750-1800
	α-keto	174060
	β-eto	1635–55
	α-halo	1740–70
•	lactone (5 ring)	1760-80
C(=O)-N	1º amide l	~1690
Amides	amide II	~1600
	2º amide I	1670-1700
	amide II	1510-50
	3º amide	163070
	lactam	1700
amino acids	Free	1390-1425, 1560-1600
C=N	oxime	1640-90
		l para april