UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2014/15

£

TITLE PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS: There are six (6) questions. Each question is worth 25 marks. Answer any four (4) questions.

A data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) Tabulated values of standard entropies of some aqueous ions are negative. Why is this statement consistent with the third law of thermodynamics? [3]
- (b) Calculate the ionic strength, I, the mean activity coefficient, γ_{\pm} , and the activity, *a*, of a 0.0250 mol/kg AlCl₃(aq) solution. [6]
- (c) Consider the solubility equilibrium

 $PbI_2(s) \rightarrow Pb^{2+}(aq) + 2I(aq)$ $K_{sp} = 7.1 \times 10^{-9} \text{ at } 298 \text{ K.}$

- Write down the expression of the solubility equilibrium constant, K_{sp}, in terms of the mean activity coefficient and the solubility, S, of the salt.
- Use the Debye-Huckel limiting law to explain how the solubility, S, will vary when the ionic strength of the solution is increased by adding an inert salt like KNO₃.
- (d) For the half cell reaction AgBr(s) + $e^- \rightarrow Ag(s) + Br(aq)$, $E^{\theta} = +0.0713$ V. Using this result and $\Delta_f G^{\theta}(AgBr,s) = -96.9$ kJ/mol, determine $\Delta_f G^{\theta}(Br,aq)$. [5]

(e) Consider the following reaction:

 $4 \text{ NO}_3(aq) + 4 \text{ H}^+(aq) \rightarrow 4 \text{ NO}(g) + 2 \text{ H}_2\text{O}(l) + 3 \text{ O}_2(g)$

- (i) Identify the two half reactions.
- (ii) Using data from the table below calculate the standard cell potential and the equilibrium constant of the reaction. [7]

Question 2 (25 marks)

Consider the cell

 $Zn|ZnCl_2(aq, 0.00500 m)|Hg_2Cl_2(s)|Hg(l)$

given that the cell potential is +1.2272 V and redox potentials in the table below,

- (a) Write the cell reaction and Nernst equation in terms of the mean activity coefficient and molality of the zinc chloride solution. [5]
- (b) Determine the standard cell potential, $\Delta_r G$, $\Delta_r G^{\circ}$ and the equilibrium constant, K, for the cell reaction. [7]
- (c) Determine the mean activity coefficient of ZnCl₂ from (1) the measured cell potential and (2) the Debye-Huckel limiting law.
 [8]

(d) Given that
$$\frac{dE}{dT} = -4.52 \times 10^{-4} V K^{-1}$$
 calculate $\Delta_r S$ and $\Delta_r H$ [5]

T	able	1:	Standard	potentials	at	298	Κ

Reduction half reaction	E ^e /V
$AgBr + e^- \rightarrow Ag + Br^-$	+0.0713
$NO_3^- + 4 H^+ + 3e^- \rightarrow NO + 2 H_2O$ $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	0.957 1.229
$2H^+ + 2e^- \rightarrow H_2$	0, by definition
$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2 Cl^-(aq)$	+0.2676
$Zn^{2+} + 2e^- \rightarrow Zn$	-0.7628

Question 3 (25 marks)

x

(a) Provide a molecular explanation for the observation that the viscosity of a gas increases with temperature whereas the viscosity of a liquid decreases with increasing temperature.

[4]

(b) A Knudsen cell was used to determine the vapour pressure of germanium at 1000 °C.
 During an interval of 7200 s the mass loss through a small hole of radius 0.50 mm

amounted to 43 μ g. What is the vapour pressure of germanium at 1000 °C. Assume the gas is monatomic. [8]

- (c) Show that the flux of particles is proportional to the concentration gradient, the proportionality constant being $D = \frac{1}{3}\lambda \overline{c}$. [6]
- (d) Calculate (i) the diffusion constant of argon at 25 °C and 10⁻⁶ atm and (ii) the flow/flux of argon if a pressure gradient of 0.1 atm cm⁻¹ is established in a pipe. (Hint express concentration gradient in terms of pressure gradient first)

(For argon
$$\sigma = 0.36 \text{ nm}^2$$
, and $\bar{c} = 397 \text{ m/s}$ at 25 °C.) [7]

Question 4 (25 marks)

(a) Given the following data:

Salt	$\Lambda_m^0/\mathrm{S}~\mathrm{cm}^2\mathrm{mol}^{-1}$
NaCl	126.4
KNO ₃	144.9
KCl	149.8

And that t_+ for Na⁺ in NaCl is 0.39, calculate

- (i) Λ_m^0 for NaNO₃ [3]
- (ii) t_+ for Na⁺ in NaNO₃ [4]
- (b) The conductance of KI has been measured in a binary solvent mixture of water and 1,3dioxolan-2-one. The following data was obtained:

c/mmolL ⁻¹	17.68	10.88	7.19	2.67	1.28	0.83	0.19
$\Lambda_m/S \text{ cm}^2 \text{mol}^{-1}$	42.45	45.91	47.53	51.81	54.09	55.78	57.42

(i) Show that the data follows Kohlrausch's law: $\Lambda_m = \Lambda_m^0 - \kappa c^{\frac{1}{2}}$.

(ii) Determine the value of Λ_m^0 of KI in this solvent system.

[8]

(c) At 25 °C the molar ionic conductivity of Br⁻ is 7.82 mS m² mol⁻¹. Calculate

(i) its mobility (ii) its diffusion coefficient and (iii) estimate its effective radius in water. Viscosity of water is 1.00 cP. [10]

Question 5 (25 marks)

- (a) The equilibrium A = B + C at 25 °C is subjected to a temperature jump that slightly increases the concentrations of B and C. The measured relaxation time is 3.0 µs. The equilibrium constant for the system is 2.0 x10⁻¹⁶ at 25 °C, and the equilibrium concentrations of B and C are both 2.0 x10⁻⁴ M. Calculate the rate constants for he forward and reverse steps. [8]
- (b) The rate constant for the decomposition of a certain substance is $1.70 \times 10^{-2} \text{ M}^{-1} \text{s}^{-1}$ at 24 °C and 2.01 $\times 10^{-2} \text{ M}^{-1} \text{s}^{-1}$ at 37 °C. Determine the Arrhenius parameters for the reaction.

[6]

s

- (c) The rate constant for the first order decomposition of a compound A in the reaction
 - $A \rightarrow P \text{ is } k= 3.56 \text{ x} 10^{-3} \text{ s}^{-1} \text{ at } 25 \text{ }^{\circ}\text{C}.$
 - (i) What is the half-life of A?
 - (ii) What will be the pressure after 50 s of reaction if the initial pressure was 33.0 kPa.

[5]

(d) The following chain mechanism has been proposed for the reaction $H_2(g) + Cl_2(g) \rightarrow 2$ HCl(g) which occurs when a gas mixture of hydrogen and Chlorine is exposed to light with wavelength < 480 nm.

Initiation $Cl_2 + hv \longrightarrow 2 Cl$ $v = I_a$ Propagation: $Cl + H_2 \xrightarrow{k_1} HCl + H$ $H + Cl_2 \xrightarrow{k_2} HCl + Cl$

Termination $\operatorname{Cl} \xrightarrow{k_3} \frac{1}{2} \operatorname{Cl}_2$ (on wall)

Use the steady state approximation method to show that the rate law is independent of $[Cl_2]$, but is first order with respect $[H_2]$ and with respect to I_a . [6]

Question 6 (25 marks)

- (a) Discuss the advantages of photochemical activation over thermal activation in chemical kinetics. [4]
- (b) In an experiment to measure the quantum yield of a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from a 87.5 W source for 28.0 min. The intensity of the transmitted radiation was 0.257 that of the incident radiation. As a result of the irradiation, 0.324 mol of the absorbing substance decomposed. Calculate the quantum yield.
 [6]
- (c) An enzyme catalysed reaction following the Michaelis-Menten mechanism

$$E + S \Rightarrow ES \rightarrow P + E$$
 rate constants are k_1, k_{-1}, k_2

has the rate law $\frac{d[P]}{dt} = \frac{k_2[S][E]_0}{K_M + [S]}$, where $K_M = \frac{k_1 + k_2}{k_{-1}}$

The following data relate to such a reaction.

[S]/mol L ⁻¹	0.00125	0.0025	0.0050	0.020
Rate/Mol L ⁻¹ s ⁻¹	2.78 x10 ⁻⁵	5.00×10^{-5}	8.33 x10 ⁻⁵	1.67×10^{-4}

The enzyme concentration is 2.3nM. Calculate (i) the maximum rate, v_{max} (ii) the Michaeli's constant K_M , (iii) k_2 and (iv) catalytic efficiency. [15]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ^s m s ⁻¹
Elementary charge	.e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
	•	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
•	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	NA	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ .	$4\pi \ge 10^{-7} \text{ J s}^{-2} \text{ C}^{-2} \text{ m}^{-1}$
	· · · ·	$4\pi \ge 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		•
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear .	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_{p} = 4\pi \varepsilon_{p} \hbar/m_{e} c^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{\rm p} e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e}e^{4}/8h^{3}c\epsilon_{a}^{2}$	$1.097 \ 37 \ X \ 10^7 \ m^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 1.602	joules (2 X 10	(J) -19 J	1 erg 1 eV/n	nolecul	e	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixe	5 f	p	n	µ	m -	c	d	-k	M	G	
	femto	pico.	nano	micro	milli	centi	deci	kilo	mega	giga	
	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10 ⁹	

• ·

PERIODIC TABLE OF ELEMENTS

GROUPS																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	1Λ	117	IIIB	IVB	-VB	VIB	VIIB		VIIIB		IB	IIB	AILI	IVA	VA	VIA	VIIA	VIIIA
	1.008																	4.003
1	П								*					•		,		lle
	1		-												·····			2
*	6.941	9.012					۹.				Atom	ic mass —	10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be									Syr	nbol –	B	C	N	0	F	-Ne
	3.	4									Atom	ic No. 🗂	5	6	7	8	9	10
	22.990	24.305					*						26.982	28.086	30.974	32.06	35,453	39.948
3	Na	Mg			*	TRAN	ISITION	I ELEM	IENTS				Al	Si -	P	S	Cl	Ar
	11	12											13	14	15	16	17	18
· ·	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
		38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Rc	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	[83	84	85	80
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
7	l'r	1Ka	TAC	KI	FIA	Unn	Uns		Une	Uun								
	- 67	00	89	104	103	100	107.	108	109	110	J							
				·····													10100	
*Lanthanide S				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
		le Serie	S	Ce	l'r	Nd	l'm	Sm	Lu	Ga	Tb	Dy	Ho	Er	1 m	Y D 70		• •
		i	۵۵	29	00	01	62	6.0	- 04	. 65	00	. 67	08	09	70	<u>a</u>		
**	Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		•
			90	91	92	93	94	95	96	97	- 98	99	100	101	102	103		

() indicates the mass number of the isotope with the longest half-life.