DEPARTMENT OF CHEMISTRY

2

1.0.

UNIVERSITY OF SWAZILAND

MAY 2016 FINAL EXAMINATION

TITLE OF PAPER	:	INTRODUCTION TO ANALYTICAL CHEMISTRY
COURSE NUMBER	:	C204
TIME	:	3 HOURS
Important Information	:	1. Each question is worth 25 marks.
		2. Answer any four (4) questions in this paper.
		3. Marks for <u>ALL</u> procedural calculations will be awarded.
		4. Start each question on a fresh page of the answer sheet.
		5. Diagrams must be large and clearly labelled accordingly.
		6. This paper contains an appendix of chemical constants
		7. Additional material: graph paper.

You are not supposed to open this paper until permission has been granted by the chief invigilator

÷

QUESTION 1 [25 MARKS]

- a) During analysis it is important that a method blank be always included.
 - i) What is a method blank? [2]
 - ii) What is the purpose of a Method Blank? [2]
- b) The following are three sets of data for the atomic mass of antimony from the work of Willard and McAlpine

Set I (Amu)	Set 2 (amu)	Set 3 (amu)	
121.771	121.784	121.752	
121.787	121.758	121.784	
121.803	121.765	121:765	
121.781	121.794		

- i) Determine the mean and the standard deviation of each data set. [6]
- Determine the 95% confidence interval of set 1 if the standard deviation (s) is a good estimate of σ. [3]
- iii) Determine whether the 121.803 value in the first data set is an outlier of that set at 95% confidence level. [3]
- iv) Determine whether the precision of data set 1 is the same as that of data set 3.[4]
- c) In analytical chemistry explain what is meant by the limit of detection of a method. Explain how this parameter is obtained. [5]

QUESTION 2 [25 MARKS]

- a) i) List the four main types of determinate error. [2]
- ii) Give a brief explanation/description of each of the types of determinate error you listed in (i) giving a specific example for each. [4]
- iii) Explain two ways which can be used to detect determinate errors. [4]

្វ1

 b) The concentration of sodium was determined using flame emission. The data obtained for the external calibration is given below;

Sodium (ppm)	Emission Intensity
0.10	0.11
0.50	0.52
1.00	1.8
5.00	5.9
10.00	9.5
unknown	4.4

- i) Use the graphical method to find the concentration of the unknown. [4]
- ii) It was discovered that the emission intensities was influenced by a variety of factors, including flame temperature. In order to compensate for this variation an internal standard method was used where the same amounts of lithium was added to all the standards and sample. The following data was obtained

Sodium (ppm)	Emission Intensity	Li Emission Intensity
0.10	0.11	86
0.50	0.52	80
1.00	1.8	128
5.00	5.9	91
10.00	9.5	73
unknown	4.4	95

Determine the concentration of Na (graphically) using this data [6]

- iii) Is there any difference between the plot made in a (i) and that in a (ii). Explain(2)
- iv) Give three characteristics of a good internal standard. [3]

QUESTION 3 [25 MARKS]

- a)Define the terms *strong acid* and *weak acid*. Using hydrochloric and ethanoic acid as examples, write equations to show the dissociation of each acid in aqueous solution. [4]
- b) Define the terms Brønsted-Lowry acid and Lewis base, and identify one example of each of these species in the equation from (a) above which is illustrating the dissociation of ethanoic acid. [4]
- c) Suggest two methods, other than measuring pH, which could be used to distinguish between solutions of a strong acid and a weak acid of the same concentration. State the expected results. [4]
- d) The pH values of solutions of three organic acids of the same concentration were measured.

(i) Identify which solution is the least acidic. [1]

(ii) Deduce how the $[H^+]$ values compare in solutions of acids Y and Z. [2]

(iii) Arrange the solutions of the three acids in decreasing order of electrical conductivity, starting with the greatest conductivity, giving a reason for your choice.[2]

e) The CO in a 20.3 L sample of gas was converted to CO₂ by passing the gas over iodine pentoxide heated to 15 0 degrees Celsius.

 $I_2O_5(s) + 5CO(g) \rightarrow 5CO_2(g) + I_2(g)$

The iodine was distilled at this temperature and was collected in an absorber containing 8.25 mL of 0.01101 M Na₂S₂O₃

 $I_2(g) + 2S_2O_3^{2-}(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$

The excess $Na_2S_2O_3$ was back titrated with 2.16 mL of 0.00947 M I₂ solution.

- i) Calculate the concentration in milligrams of CO (28.01 g/mol) per litre of sample.
 (6)
- ii) The method used in e (i) is known as back titration; explain what is meant by back titration? (2)

QUESTION 4 [25 MARKS]

a) Gold was determined in a waste stream using voltammetry. The peak height of the current signal is proportional to concentration. A standard addition analysis was done by adding specific volumes of 10 ppm Au solution to the sample as shown in the table below. All solutions were made up to a final volume of 20 ml. The peak currents obtained from the analyses are also tabulated below

Volume of Sample / mL	Volume of Standard / mL	Peak Current / µA
5	0	8
5	2	16
5	5	25
5	10	41

- i) Calculate the concentration of Au in the original sample using the least squares method. [10]
- What are the two assumptions made in the establishment and application of the least squares method? [4]
- iii) Give the main advantage of using standard addition over external calibration. [1]
- iv) Explain two disadvantages of using the standard addition method
- v) What is 10 ppm Au in ppb? [2]
 - b) Describe a sampling situation in which a sampler can use judgemental sampling to collect his or her samples. What is the disadvantage and advantage of using this technique? [4]

c) Discuss another type of sampling technique used in analytical chemistry, giving one advantage and disadvantage. [4]

QUESTION 5 [25 MARKS]

- a) In determining the amount of chlorine in unknown liquid samples, a gravimetric method was used. The method involved the addition of excess silver nitrate to the analyte. The excess silver nitrate was then back titrated using sodium thiocyanide and iron (III) was used as an indicator. At equivalence point
 - i) What special name is given to this type of precipitation? [1]
 - ii) Write down all the reactions which take place during this titration. [3]
 - iii) What are the challenges of using this type of titration, and how can these problems be solved? Explain [4]

b)

- i) Explain the term 'Homogeneous precipitation'. [2]
- ii) Explain two ways in which homogeneous precipitation can be achieved during gravimetric analysis. Give a specific example for each. [4]
- iii) What are the unique advantages of homogenous precipitation when compared to direct precipitation? [3]
- c) i) What is meant by co-precipitation in gravimetry? [2]ii) Briefly describe three (3) different types of co-precipitation. [3]
- d) Explain how the particle size of a precipitate can be controlled with reference to relative super saturation. [3]

QUESTION 6 [25 MARKS]

- a) Method validation is one of the key elements in the development of a method to be used for analysis. Method validation looks into the competence of the developed method to produce reliable data. Explain in detail four (4) different ways which one can use to validate his / her data. [10]
- b) i) Find the pH in the titration of 25 mL of 0.3 M HF with 0.3 M NaOH after adding 10 mL of NaOH. [6]
 ii) What name is given to the resultant solution in b (i)? [2]
- c) i) A standard 0.0100 M solution Na⁺ is required to calibrate a flame photometric method to determine the element. Describe how 500 mL of this solution can be prepared from a primary standard Na₂CO₃. [5]
 - ii) What is the concentration in c (i) in ppm? [2]

APPENDIX

Useful Formulas

 $r = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{\sqrt{\left[n \sum x_{i}^{2} - (\sum x_{i})^{2} \left[n \sum y_{i}^{2} - (\sum y_{i})^{2}\right]}\right]}$ $u = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$ $\left[x_{i}\right]^{2}$

<u>TABLES</u>

TABLE 1: Table of Acid and Base Strength

Ka	Acid		Conjugate Base					
	Name	Formula	Formula	Name				
Large	Perchloric acid	HClO ₄	ClO4 ⁻	Perchlorate				
0				ion				
3.2 * 10 ⁹	Hydroiodic acid	HI	I-	Iodide				
1.0 * 109	Hydrobromic acid	HBr	Br-	Bromide				
$1.3 * 10^{6}$	Hydrochloric acid	HCl	Cl-	Chloride				
$1.0 * 10^3$	Sulfuric acid	H ₂ SO ₄	HSO4 -	Hydrogen				
				sulfate ion				
$2.4 * 10^{1}$	Nitric acid	HNO ₃	NO ₃ ⁻	Nitrate ion				
***	Hydronium ion	H ₃ O+	H ₂ O	Water				
5.4 * 10 ⁻²	Oxalic acid	HO ₂ C ₂ O ₂ H	HO ₂ C ₂ O ₂	Hydrogen				
				oxalate ion				
1.3 * 10 ⁻²	Sulfurous acid	H ₂ SO ₃	HSO ₃	Hydrogen				
			*	sulfite ion				
1.0 * 10 ⁻²	Hydrogen sulfate ion	HSO ₄	SO4 2-	Sulfate ion				
7.1 * 10 ⁻³	Phosphoric acid	H ₃ PO ₄	H_2PO_4	Dihydrogen				
				phosphate				
			·	ion				
7.2 * 10 ⁻⁴	Nitrous acid	HNO ₂	NO3 -	Nitrite ion				
6.6 * 10-4	Hydrofluoric acid	HF	F	Fluoride ion				
1.8 * 10 ⁻⁴	Methanoic acid	HCO ₂ H	HCO ₂ .	Methanoate				
	•			ion				
6.3 * 10-5	Benzoic acid	C ₆ H ₅ COOH	C ₆ H ₅ COO-	Benzoate ion				
5.4 * 10-5	Hydrogen oxalate ion	$HO_2C_2O^2$	$O_2 C_2 O_2^{2-}$	Oxalate ion				
1.8 * 10-5	Ethanoic acid	CH ₃ COOH	CH₃COO	Ethanoate				
				(acetate) ion				
4.4 * 10-7	Carbonic acid	CO3 ²⁻	HCO ₃	Hydrogen				
				carbonate				
				ion				
1.1 * 10-7	Hydrosulfuric acid	H ₂ S	HS-	Hydrogen				
· · · · · · · · · · · · · · · · · · ·				sulfide ion				
6.3 * 10*	Dihydrogen phosphate ion	H ₂ PO ₄	HPO ₄ 2-	Hydrogen				
				phosphate				
C 0 + 1078			~?-	ion				
$6.2 \times 10^{\circ}$	Hydrogen sulfite ion	HS	<u>S</u>	Sulfite ion				
2.9 + 10 *	Hypochlorous acid	HCIO	CIO	Hypochlorite				
C 0 + 10-10	TT 3 + 1		0.7	ion				
$6.2 + 10^{-10}$	Hydrocyanic acid	HCN		Cyanide ion				
5.8 + 10-10	Ammonium ion	NH4	NH ₃	Ammonia				
5.8 + 10	Boric acid	H ₃ BO ₃	H_2BO_3	Dinydrogen				
				carbonate				
47 * 10-11	Undrocon conhonets ion		CO 2-	Conhoneto				
4.7 * 10	Hydrogen carbonate ion	HCU ₃	CO_3	Carbonate				
A 2 * 10 ⁻¹³	Hudragen phasehots is-		PO 3-	IOII Dheanhate				
4.2 10	riyorogen phosphate ion	nr0 ₄	PU4	rnosphate				
1 8 * 10-13	Dihudrogen horste ion	H.PO."	HRO 2-	Uudrogon				
1.0 10	Dinyurogen borate ion	n2DU3	nd03	horate ion				
13 * 10 ⁻¹³	Hydrogen sulfide ion	Не_	S 2-	Sulfide ion				
1.5 10	Hydrogen borste ion	HRO. 2-		Borate ion				
	water	H-O		Hydrovide				
	77 CLUI	1120	011-	LIJUUNIUC				

Kw= 1x10-14

Table 2: The Q- Table

Number of	90%	95%	99%			
Observations	Confidence	Confidence	Confidence			
3	0.941	0.970	0.994			
4	0.765	0.829	0.926			
5	0.642	0.710	0.821			
6	0.560	0.625	0.740			
7	0.507	0.568	0.680			
8	0.468	0.526	0.634			
9	0.437	0.493	0.598			
10	0.412	0.466	0.568			

Table 3: T- Table

Degrees of	Factor for Confidence Interval												
Freedom													
	80%	90%	95%	99%	99.90%								
1	3.08	6.31	12.7	63.7	637								
2	1.89	2.92	4.3	9.92	31.6								
3	1.64	2.35	3.18	5.84	12.9								
4	1.53	2.13	2.78	4.6	8.6								
5	1.48	2.02	2.57	4.03	6.86								
. 6	1.44	1.94	2.45	3.71	5.96								
7	1.42	1.9	2.36	3.5	5.4								
8	1.4	1.86	2.31	3.36	5.04								
9	1.38	1.83	2.26	3.25	4.78								
10	1.37	1.81	2.23	3.17	4.59								
11	1.36	1.8	2.2	3.11	4.44								
12	1.36	1.78	2.18	3.06	4.32								
13	1.35	1.77	2.16	3.01	4.22								
14	1.34	1.76	2.14	2.98	4.14								

Table 4: Z- Table

Confidence Level , %	z
50	0.67
68	1.00
80	1.28
90	1.64
95	1.96
95.4	2.00
99	2.58
99.7	3.00
99.9	3.29

Table 5: F- Table

	Critical	values	sf F	at 95% confidence level												
Degrees of	Degrees of freedom for s ₁															
for s ₂	2	3	4	5	6	7	8	9	10	12	15	20	30	30		
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5		
3	9.55	9.28	9.12	9.01	8.94	3.89	8.84	3.81	8.79	8.74	8.70	8.66	8.62	8.53		
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.75	5.63		
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4,77	4.74	4.63	4.62	4.56	4.50	4.36		
6	5.14	4.76	4.53	4.39	4.25	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.81	3.67		
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.53	3.51	3.44	3.38	3.23		
8	4.46	4.07	3.84	3.69	3.55	3.50	3.44	3.39	3.35	3.23	3.22	3.15	3.08	2.93		
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.8 6	2.71		
10	4.10	3.71	3,48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.84	2.77	2.70	2.54		
11	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40		
12	3.88	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.47	2.30		
13	38:	1 41	3 18	3.02	2.92	2 83	2.77	271	2.67	2.60	2 53	2.46	E 2.38	2.21		
14	3.74	3.34	3.11	2.96	2.Ki	2.76	2.70	2.65	2.60	2.53	2.46	2.34	2.31	2.13		
15	3.08	J.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.45	2.40	2.33	2.25	2.07		
16	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.01		
17	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.35	2.31	2.23	2.15	1.96		
18	3.56	3.16	2.93	2.77	2.66	2.58	2,51	2.46	2.41	2.34	2.27	2.19	2.11	1.92		
19	3.52	3.13	2.90	2.74	2.63	2.54	2.18	2.42	2.38	2.31	2.23	2.16	2.07	1.88		
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.04	1.84		
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62		
×	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.46	1.00		

1	2	3	Ą	5	6	7	8	9	10	11	12	13	14	15	16	17	18
[<u>1</u>	1		-	-											:		7
											,						2
10079										· .							10026
3	4]										5	6	7	8	9	10
	Be											в	С	M	0	F	Ne
6.941	9.0122	ł										10.811	12.011	14.007	15,999	18,998	20.180
11	12	1										13	14	15	16	17	18
Na	Mg											AI	Si	Р	· S .	CI	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	25	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
.39.098	40.078	44.956	47.83	50.942	51.996	54. <u>9</u> 38	55.847	58,933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50 [·]	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn -	Sb	Те	1	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	1.01.07	102.91	105.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	[*] 80	81	82	83	84	85	86
Cs	Ba	La	2-1-5	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.95	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104 .	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(7)	(?)	* .				£ 4		:
								•									
		des	E0	50	60	61	67	1 62	64	65	66	67	69	60	* 6 70	71	1
		iani	50	59		Due	CZ	03 III.	~	7L	D	61-	- UO	03 T	10 10 ML	11	
		nth	Le	Pr	NC	Pm	Sm	Eu	Ga	D	Dy	но	Er	Im	C Y D	LU	
		La .	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	152.50	164.93	167.26	168.93	173.04	174.97	J ,
	•				02	02		05.		07	on	00	100	101	* *	102	J
		ides	90	. AT	92	93	94	95	90	9/ DI-	90	99	100	101	102	103	
		tini	1n	Ра	0	пр	PU	Am	Cm	RK	CT	ES	۲m	IVIC	NO	Lr	
		Ac	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(25 <u>8</u>)	(259)	(262)	1 .

Periodic Table of the Elements