UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2015/2016

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

4

.

There are six (6) questions. Each question carries 25 marks. Answer Question one (1) and any three (3) other questions.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 (25 MARKS)

a)	Using diagrams, where necessary, in terms of relaxation effect and eletrophoretic	c effect,
	explain the concentration dependence of molar conductivities shown by both str	ong and
	weak electrolytes.	[5]
b)	Write short notes to define the nature and role of enzymes in reaction kinetics. Yo	ur notes
	should include examples to illustrate your answer.	[5]
c)	Using an equation of your choice, briefly explain pre-equilibrium approach.	[4]
d)	What approximations underlie the BET isotherms	[4]
e)	Describe the formation of a hydrogen bond in terms of electrostatic interaction me	odel and
	state its limitations	[3]
f)	Define the mean free path (λ). How does it vary with the number density,	particle
	diameter and particle mean speed.	[4]

QUESTION 2 (25 MARKS)

.

a) Given that $\Delta r G^{\Theta} = -212.7 \text{ kJ/mol}$ for the reaction in a Daniel cell at 25 °C, and that $b(CuSO_4) = 1.0 \times 10^{-3} \text{ mol/kg}$ and $b(ZnSO_4) = 3.0 \times 10^{-3} \text{ mol/kg}$, calculate the reaction quotient and the cell potential assuming that the activity coefficients of each ion is equal to the mean activity coefficient in the respective compartments [6]

Debye-Huckel constant A = 0.509

b) A quinehydrone (quinehydrone, $Q \cdot QH_2$ is a complex of quinine, $C_6H_4O_2=Q$ and hydroquinone, $C_6H_4O_2H_2=QH_2$) electrode has the reduction half reaction;

 $\begin{array}{rcl} Q(aq) &+& 2H^{+}(aq) &+& 2e^{-} &\rightarrow & QH_{2}(aq) & E^{\theta} &= +0.6994 \ V \\ Hg_{2}Cl_{2}(s) &+& 2e^{-} &\rightarrow & 2Hg(l) &+& 2Cl^{-}(aq) & E^{\theta} &= +0.2676 \ V \end{array}$

If the cell $Hg | Hg_2Cl_2(s) | HCl (aq) | Q \cdot QH_2 | Au$ is prepared and the measured cell potential was found to be +0.190V, calculate the pH of the HCl solution assuming that the Debye-Huckel limiting law holds.

 $pH = -log[H+] = -log[a_{H+}], lnx = ln10logx$

[6]

- c) Write the electrode half reactions and the overall cell reactions for the following.
 - *i.* $Pt(s)|Cl_2(g)|HCl(aq)||K_2CrO_4(aq)|Ag_2CrO_4(s)|Ag(s)|$

- *ii.* $Cu(s)|Cu^{2+}||(Mn^{2+}(aq),H^{+}(aq)|MnO_{2}(s)|Pt(s)$ [6]
- d) For the liquid carbon tetrachloride, CCl₄, at 20 °C and 1 atm, the relative permittivity, ε_r , is 2.24 and the density is 1.59 g/cm³. Calculate the polarizability, α and the polarizability volume α ' for CCl₄. Given that vacuum permittivity, ε_0 , is 8.854 x 10⁻¹² C²m⁻¹J⁻¹

QUESTION 3 (25 MARKS)

- a) With the aid of an equation or any other information explain the following observations
 - *i*. As the Ionic radius increases (r), the ion mobility (u), increases [2]
 - ii. Ionic hydrodynamic radius (a) decreases with an increase of ionic radius (r).
 - [1]

[7]

- *iii.* The mobility of H^+ is 9.03 x higher than the mobility of Li^+ . [3]
- b) Derive the linearised Ostwald dilution law for a weak electrolyte. (clearly show all steps)

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda_m^0} + \frac{\Lambda_m c}{K_a (\Lambda_m^0)^2}$$
 Ostwald dilution law [4]

c) The following data were obtained for a weak electrolyte, HA in ethanol at 25 °C

Concentration $c/10^{-4}$ mol/dm ³	1.566	2.600	6.219	10.441
Conductivity	1.788	2.418	4.009	5.336
K/10 ⁻⁶ Scm ⁻¹				

Show that these data is in accordance with the Ostwald dilution law. [5]

d) Derive an expression that shows how the pressure of a gas inside an effusing oven varies with time if the oven is not replenished as the gas escapes,

$$p = p_0 e^{-\frac{t}{\tau}}, \tau = \left(\frac{2\pi M}{RT}\right)^{\frac{1}{2}} \frac{V}{A}$$
 where A is the area of the effusing hole and given

that the rate of effusion, $Z_w A = \frac{pAN_A}{(2\pi MRT)^{\frac{1}{2}}}$ and $\int \frac{1}{x} = \ln x$

Then show that the half life $(t_{\frac{1}{2}})$ is independent of the initial pressure. [10]

QUESTION 4 (25 MARKS)

- a) The reaction rate (v) in the reaction $2A + B \rightarrow 2C + 3D$ is 1.0 mol L⁻¹s⁻¹. State the rate of formation or consumption of A, B, C and D. [4]
- b)
- *i.* What is a half life?
- *ii.* Derive the expression that relates the half life to the rate constant and initial concentration for a zero order reaction. [4]
- c) For the decomposition of N_2O_5 , the following data was obtained:

θ/°C	25	35	45	55	65
$k/S^{-1}(x \ 10^{-5})$	1.72	6.55	24.95	75	240

Calculate the activation energy and the pre exponential factor for this reaction

[10]

[4]

- d) For the reaction, H_3O^+ + $OH^- \leftrightarrow 2H_2O$,
 - *i.* Show that for a small perturbation, the relaxation time expression for the reaction (with k_f and k_r being the constants for the forward and reverse reactions) is given by $\frac{1}{\tau} = k_f ([H_3O^+] + [OH^-])$ assuming that the concentration of water remains

constant even after the perturbation

ii. Hence calculate the equilibrium concentrations of the hydronium and hydroxyl ions which are assumed to be equal at 25 °C, given that τ =3.7 x 10⁻⁵s and k_f=1.35 x 10⁸ m³ mole⁻¹s⁻¹. [3]

QUESTION 5 (25 MARKS)

- a) Discuss the advantages of photochemical activation over thermal activation in chemical kinetics.
 [4]
- b) The mechanism of a reaction $H_2(g) + I_2 \rightarrow 2HI(g)$ is
 - (1) $I_2 \leftrightarrow 2I$ k_1 and k_1'
 - (2) I + H₂ \rightarrow HI + H k₂
 - $(3) H + I_2 \rightarrow HI + I \qquad k_3$

Find the expression of the rate law for the formation of HI using the steady state approximation. [7]

c) The molar polarization, P_m, is defined as $P_m = \frac{N_A}{3\varepsilon_0} \left(\alpha + \frac{\mu^2}{3kT} \right)$. The molar polarization of

gaseous water at 100 kPa, is given in the table below.

T/K	384.3	420.1	444.7	454.1	522.0
$P_m/(cm^3/mol)$	57.4	53.5	50.1	46.8	43.1

Calculate:

- *i*. The dipole moment
- *ii.* Polarizability and
- iii. The polarizability volume of water.

QUESTION 6 (25 MARKS)

- a) What assumptions did Langmuir make when deriving his isotherm $\theta = \frac{\alpha p}{1 + \alpha n}$
- [4]

[14]

b) For N₂ adsorbed on a certain sample of charcoal at -77 °C, the volume of adsorbed N₂ (measured at 0 °C and 1 atm) per gram of charcoal varied with N₂ pressure as given below:

P/atm	3.5	10.0	16.7	25.7	33.5	39.2
V/(cm ³ /g)	101	136	153	162	165	166

i. Show that the data fits the Langmuir isotherm.

ii. Determine the value of α

- *iii.* Determine the volume of N_2 needed for monolayer coverage. [10]
- c) CO adsorbs non-dissociatively on the (111) plane of Ir with $A_{des} = 2.4 \text{ x } 1014/\text{s}$ and $E_{a,des} = 151 \text{ kJ/mol}$. Find the half life of CO chemisorbed on Ir (111) at 300K [3]
- d) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta = kp^{\frac{1}{n}}$. Adapt the equation to apply to a solution and check its applicability to the

following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

FHE	END	/100/				
	Wa is the mas	[8]				
	W _a /g	0.04	0.06	0.12	0.16	0.18
	[acid]mol/L	0.05	0.10	0.50	1.0	1.5

١

٨.

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	, c	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	F=N _A e	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
•		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
	· · ·	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
· · · · · · · · · · · · · · · · · · ·	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	NA	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ.	$4\pi X 10^{-7} J s^2 C^2 m^{-1}$
	•	$4\pi X 10^{-7} T^2 J^{-1} m^3$
Magneton	• 1-	
Bohr	$\mu_{B} = e\hbar/2m_{e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_v = 4\pi \epsilon_v \hbar/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_e e^4/8h^3 c \varepsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	•	-
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

l cal =	4.184 joules (J)	1 erg	=	1 X 10-7 J
l eV =	1.602 2 X 10 ⁻¹⁹ J	1 eV/molecule		96 485 kJ mol-1
Prefixes		μ m c micro milli centi 10 ⁻⁶ 10 ⁻³ 10 ⁻²	deci 10 ⁻¹	k M G kilo mega giga 10 ³ 10 ⁶ 10 ⁹

•

PERIODIC TABLE OF ELEMENTS

GROUPS																		
Γ	J	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	I۸	IIA Î	IIIB	IVB	·VB	VIB	VIIB		VIIIB		IB	118	IIIA	IVA	VA	VIA	VIIA	VIIIA
	1,008							•										4.003
	11			• * 1 * · · .							•				IIc			
	i		•													2		
•	6.941	9.012]								Atom	ic mass –	10.811	12.011		15.999	18.998	20.180
2	Li	Be										nbol –	→ B	C	N	0	F	-Ne
	3.	4									Aton	nic No. 🗌	5	6	7	8	9	10
	22.990	24.305	1										26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	ISITION	I ELEN	IENTS				AI	Si	• P	S	CI	Ar
	11	12											13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Sc	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Tc	Ι	Xc
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Rc	Os	Ir '	Pt	Au	Hg	TI	Pb '	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80 `	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
7	Fr	Ra	**Åc 89	Rf 104	Ha	Unh	Uns	Uno	Une	Uun		۰ ^۰ ،						
	87 88 8				105	106	107.	108	109	110								
										• •							· ·	
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	17.4.97	
*Lanthanide Series				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				58	59	60	61	62	63	64	65	66	· 67	68	69	70	71	·
**A	ctinide	Scries	Ì	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
			1	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	•
	·			90	91	92 ·	93	94	95	96	97	· 98	99	100	101	102	,103	

() indicates the mass number of the isotope with the longest half-life.

•