UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS ACADEMIC YEAR 2017/2018

TITLE OF PAPER: INTRODUCTORY CHEMISTRY

COURSE NUMBER:
TIME ALLOWED:
INSTRUCTIONS: THERE ARE TWO SECTIONS: SECTION A AND SECTION B. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY TWO QUESTIONS FROM SECTION B.

SECTION A IS WORTH 50 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

THE ANSWER SHEET FOR SECTION A IS ATTACHED TO THE QUESTION PAPER.GIVE YOUR ANSHERS TO SECTION A QUESTIONS BY RECORDING ON THE ANSHER SHEET THE LETTER CORRESPONDING 10 THE CORRECT ANSWER.
at THE END OF THE EXAM,BEFORE YOU LEAVE, PLACE THE ANSHER SHEET INSIDE THE UNISWA ANSHER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A (Answer ALL the questions in this section)

1) Vanadium has two naturally occurring isotopes, ${ }^{50} \mathrm{~V}$ with an atomic mass of 49.9472 amu and ${ }^{51} \mathrm{~V}$ with an atomic mass of 50.9440 . The atomic weight of vanadium is 50.9415 . The percent abundances of the vanadium isotopes are \qquad $\% 50 \mathrm{~V}$ and $\% 51 \mathrm{~V}$.
A) $0.25,99.75$
B) $99.75,0.25$
C) 49,51
D) $1.0,99$
E) $99,1.0$
2) An unknown element is found to have three naturally occurring isotopes with atomic masses of $35.9675(0.337 \%), 37.9627(0.063 \%)$, and 39.9624 (99.600%). Which of the following is the unknown element?
A) Ar
B) K
C) Cl
D) Ca
E) None of the above could be the unknown element.
3) In the periodic table, the elements are arranged in \qquad .
A) alphabetical order
B) order of increasing atomic number
C) order of increasing metallic properties
D) order of increasing neutron content
E) reverse alphabetical order
4) Elements \qquad exhibit similar physical and chemical properties.
A) with similar chemical symbols
B) with similar atomic masses
C) in the same period of the periodic table
D) on opposite sides of the periodic table
E) in the same group of the periodic table
5) Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
A) H, Li
B) Cs, Ba
C) Ca, Sr
D) Ga, Ge
E) C, O
6) Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
A) O, S
B) C, N
C) K, Ca
D) H, He
E) Si, P
7) Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
A) As, Br
B) Mg, Al
C) I, At
D) Br, Kr
E) N, O
8) The elements in groups 1A, 6A, and 7A are called, \qquad , respectively.
A) alkaline earth metals, halogens, and chalcogens
B) alkali metals, chalcogens, and halogens
C) alkali metals, halogens, and noble gases
D) alkaline earth metals, transition metals, and halogens
E) halogens, transition metals, and alkali metals
9) Which pair of elements below should be the most similar in chemical properties?
A) C and O
B) B and As
C) I and Br
D) K and Kr
E) Cs and He
10) An element in the upper right corner of the periodic table \qquad .
A) is either a metal or metalloid
B) is definitely a metal
C) is either a metalloid or a non-metal
D) is definitely a non-metal
E) is definitely a metalloid
11) An element that appears in the lower left corner of the periodic table is \qquad .
A) either a metal or metalloid
B) definitely a metal
C) either a metalloid or a non-metal
D) definitely a non-metal
E) definitely a metalloid
12) What is the maximum mass in grams of NH_{3} that can be produced by the reaction of 1.0 g of N_{2} with 3.0 g of H_{2} via the equation below?
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
A) 2.0
B) 1.2
C) 0.61
D) 17
E) 4.0
13) What is the maximum amount in grams of SO_{3} that can be produced by the reaction of 1.0 g of S with 1.0 g of O_{2} via the equation below?
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
A) 0.27
B) 1.7
C) 2.5
D) 3.8
E) 2.0
14) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
The maximum amount of $\mathrm{Al}_{2} \mathrm{O}_{3}$ that can be produced from 2.5 g of Al and 2.5 g of O_{2} is
\qquad g.
A) 9.4
B) 7.4
C) 4.7
D) 5.3
E) 5.0
15) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:
$\mathrm{S}(\mathrm{s})+3 \mathrm{~F}_{3}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})$.
The maximum amount of SF_{6} that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is \qquad g.
A) 12
B) 3.2
C) 5.8
D) 16
E) 8.0
16) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O_{2} produced 3.5 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The \% yield of the reaction is \qquad .
A) 74
B) 37
C) 47
D) 66
E) 26
17) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
In a particular experiment, the reaction of 1.0 g S with $1.0 \mathrm{~g} \mathrm{O}_{2}$ produced 0.80 g of SO_{3}. The \% yield in this experiment is \qquad .
A) 30
B) 29
C) 21
D) 88
E) 48
18) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:
$\mathrm{S}(\mathrm{s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})$
In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a $7.90-\mathrm{g}$ sample of fluorine yields \qquad g of SF_{6}.
A) 30.3
B) 10.1
C) 7.99
D) 24.0
E) 0.110
19) Which one of the following is a correct expression for molarity?
A) mol solute/L solvent
B) mol solute $/ \mathrm{mL}$ solvent
C) mmol solute $/ \mathrm{mL}$ solution
D) mol solute/kg solvent
E) $\mu \mathrm{mol}$ solute/L solution
20) Which one of the following is not true concerning 2.00 L of 0.100 M solution of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
A) This solution contains 0.200 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
B) This solution contains 0.800 mol of oxygen atoms.
C) 1.00 L of this solution is required to furnish $0.300 \mathrm{~mol} \mathrm{of} \mathrm{Ca}^{2+}$ ions.
D) There are 6.02×10^{22} phosphorus atoms in 500.0 mL of this solution.
E) This solution contains $6.67 \times 10^{-2} \mathrm{~mol}$ of Ca^{2+}.
21) A $0.200 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution is produced by \qquad .
A) dilution of 250.0 mL of $1.00 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ to 1.00 L
B) dissolving 43.6 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water and diluting to a total volume of 250.0 mL
C) diluting 20.0 mL of $5.00 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution to 500.0 mL
D) dissolving 20.2 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water and diluting to 250.0 mL , then diluting 25.0 mL of this solution to a total volume of 500.0 mL
E) dilution of 1.00 mL of $250 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$ to 1.00 L
22) Which solution has the same number of moles of NaOH as 50.00 mL of 0.100 M solution of NaOH ?
A) 20.00 mL of 0.200 M solution of NaOH
B) 25.00 mL of 0.175 M solution of NaOH
C) 30.00 mL of 0.145 M solution of NaOH
D) 50.00 mL of 0.125 M solution of NaOH
E) 100.00 mL of 0.0500 M solution of NaOH
23) Which solution has the same number of moles of KCl as 75.00 mL of 0.250 M solution of KCl ?
A) 20.0 mL of 0.200 M solution of KCl
B) 25.0 mL of 0.175 M solution of KCl
C) 129 mL of 0.145 M solution of KCl
D) 50.0 mL of 0.125 M solution of KCl
E) 100 mL of 0.0500 M solution of KCl
24) What are the respective concentrations (M) of Fe^{3+} and I^{-}afforded by dissolving 0.200 $\mathrm{mol}^{\mathrm{FeI}} 3$ in water and diluting to 725 mL ?
A) 0.276 and 0.828
B) 0.828 and 0.276
C) 0.276 and 0.276
D) 0.145 and 0.435
E) 0.145 and 0.0483
25) What are the respective concentrations (M) of Mg^{+2} and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$- afforded by dissolving $0.600 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) 2$ in water and diluting to 135 mL ?
A) 0.444 and 0.889
B) 0.0444 and 0.0889
C) $0 . .889$ and 0.444
D) 0.444 and 0.444
E) 4.44 and 8.89
26) What are the respective concentrations (M) of Cu^{+2} and $\mathrm{Cl}-$ afforded by dissolving 0.200 $\mathrm{mol} \mathrm{CuCl}_{2}$ in water and diluting to 345 mL ?
A) 0.200 and 0.200
B) 0.580 and 1.16
C) 0.200 and 0.400
D) 1.16 and 2.32
E) 0.580 and 0.290
27) A tenfold dilution of a sample solution can be obtained by taking \qquad .
A) 1 part sample and 9 parts solvent
B) 1 part sample and 10 parts solvent
C) 9 parts sample and 1 part solvent
D) 10 parts sample and 1 part solvent
E) 99 parts sample and 1 part solvent
28) Mixing 10.00 mL of an aqueous solution with 10.00 mL of water represents a
A) crystallization
B) neutralization
C) twofold dilution
D) tenfold dilution
E) titration
29) You are given two clear solutions of the same unknown monoprotic acid, but with different concentrations. Which statement is true?
A) There is no chemical method designed to tell the two solutions apart.
B) It would take more base solution (per milliliter of the unknown solution) to neutralize the more concentrated solution.
C) A smaller volume of the less concentrated solution contains the same number of moles of the acid compared to the more concentrated solution.
D) If the same volume of each sample was taken, then more base solution would be required to neutralize the one with lower concentration.
E) The product of concentration and volume of the less concentrated solution equals the product of concentration and volume of the more concentrated solution.
30) A 0.100 M solution of \qquad will contain the highest concentration of potassium ions.
A) potassium phosphate
B) potassium hydrogen carbonate
C) potassium hypochlorite
D) potassium iodide
E) potassium oxide
31) The ground-state electron configuration of the element \qquad is $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{5}$.
A) Nb
B) Mo
C) Cr
D) Mn
E) Tc
32) The ground-state electron configuration of \qquad is $[\mathrm{Ar}] 4 \mathrm{~s}^{1}{ }_{3} \mathrm{~d}^{5}$.
A) V
B) Mn
C) Fe
D) Cr
E) K
33) Which one of the following configurations depicts an excited oxygen atom?
A) $1 s^{2} 2 s^{2} 2 p^{2}$ B) $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2}$
C) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p} 1$
D) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$
E) $[\mathrm{He}] 2 s^{2} 2 p^{4}$
34) Which one of the following configurations depicts an excited carbon atom?
A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1} 3 \mathrm{~s} 1$
B) $1 s^{2} 2 s^{2} 2 p^{3}$
C) $1 s^{2} 2 s^{2} 2 p^{1}$
D) $1 s^{2} 2 s^{2} 3 s^{1}$
E) $1 s^{2} 2 s^{2} 2 p^{2}$
35) How many different principal quantum numbers can be found in the ground state electron configuration of nickel?
A) 2
B) 3
C) 4
D) 5
E) 6
36) The valence shell of the element X contains 2 electrons in a 5 s subshell. In the same shell, element X has 5 electrons in a $5 p$ subshell. What type of element is X ?
A) main group element
B) chalcogen
C) halogen
D) transition metal
E) alkali metal
37) Atomic radius generally increases as we move \qquad .
A) down a group and from right to left across a period
B) up a group and from left to right across a period
C) down a group and from left to right across a period
D) up a group and from right to left across a period
E) down a group; the period position has no effect
38) Atomic radius generally decreases as we move \qquad .
A) down a group and from right to left across a period
B) up a group and from left to right across a period
C) down a group and from left to right across a period
D) up a group and from right to left across a period
E) down a group; the period position has no effect
39) Of the following, which gives the correct order for atomic radius for $\mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{Si}$ and Ar ?
A) $\mathrm{Mg}>\mathrm{Na}>\mathrm{P}>\mathrm{Si}>\mathrm{Ar}$
B) $\mathrm{Ar}>\mathrm{Si}>\mathrm{P}>\mathrm{Na}>\mathrm{Mg}$
C) $\mathrm{Si}>\mathrm{P}>\mathrm{Ar}>\mathrm{Na}>\mathrm{Mg}$
D) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}>\mathrm{Ar}$
E) $\mathrm{Ar}>\mathrm{P}>\mathrm{Si}>\mathrm{Mg}>\mathrm{Na}$
40) Of the following, which gives the correct order for atomic radius for $\mathrm{Ca}, \mathrm{K}, \mathrm{As}, \mathrm{Ge}$ and Kr ?
A) $\mathrm{Ca}>\mathrm{K}>\mathrm{As}>\mathrm{Ge}>\mathrm{Kr}$
B) $\mathrm{Kr}>\mathrm{Ge}>\mathrm{As}>\mathrm{K}>\mathrm{Ca}$
C) $\mathrm{Ge}>\mathrm{As}>\mathrm{Kr}>\mathrm{K}>\mathrm{Ca}$
D) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ge}>\mathrm{As}>\mathrm{Kr}$
E) $\mathrm{Kr}>\mathrm{As}>\mathrm{Ge}>\mathrm{Ca}>\mathrm{K}$
41) Which one of the following atoms has the largest radius?
A) O
B) F
C) S
D) Cl
E) Ne
42) Of the compounds below, \qquad has the smallest ionic separation.
A) KF
B) $\mathrm{K}_{2} \mathrm{~S}$
C) RbCl
D) SrBr_{2}
E) RbF
43) \qquad is isoelectronic with argon and \qquad is isoelectronic with neon.
A) $\mathrm{Cl}^{-}, \mathrm{F}^{-}$
B) $\mathrm{Cl}^{-}, \mathrm{Cl}^{+}$
C) $\mathrm{F}+\mathrm{F}^{-}$
D) $\mathrm{Ne}^{-}, \mathrm{Kr}^{+}$
E) $\mathrm{Ne}^{-}, \mathrm{Ar}^{+}$
44) Which of the following is an isoelectronic series?
A) $\mathrm{B}^{5-}, \mathrm{Si}^{4-}, \mathrm{As}^{3-}, \mathrm{Te}^{2-}$
B) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
C) $\mathrm{S}, \mathrm{Cl}, \mathrm{Ar}, \mathrm{K}$
D) $\mathrm{Si}^{2-}, \mathrm{P}^{2-}, \mathrm{S}^{2-}, \mathrm{Cl}^{2-}$
E) $\mathrm{O}^{2-}, \mathrm{F}-\mathrm{Ne}, \mathrm{Na}^{+}$
45) Which isoelectronic series is correctly arranged in order of increasing radius?
A) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{Cl}^{-}$
B) $\mathrm{Cl}^{-}<\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
C) $\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Cl}^{-}$.
D) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Cl}^{-}$
E) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{Ar}$
46) The Lewis structure of the $\mathrm{CO}_{3}{ }^{-2}$ ion is \qquad .
A)

B)

C)

D)

E)

$$
\left[\begin{array}{llll}
& \cdots & \cdots & \\
& 1 & 1 & \\
0 & & & 0 \\
0 & & & 0 \\
& 1 & 1 & \\
& 0.0 &
\end{array}\right]^{2-}
$$

47) A valid Lewis structure of \qquad cannot be drawn without violating the octet rule.
A) $\mathrm{PO}_{4}{ }^{3-}$
B) SiF_{4}
C) CF_{4}
D) SeF_{4}
E) NF_{3}
48) The central atom in \qquad does not violate the octet rule.
A) SF_{4}
B) KrF_{2}
C) CF_{4}
D) XeF_{4}
E) ICl_{4}^{-}
49) The central atom in \qquad violates the octet rule.
A) NH_{3}
B) SeF_{2}
C) BF_{3}
D) AsF_{3}
E) CF_{4}
50) A valid Lewis structure of \qquad cannot be drawn without violating the octet rule.
A) NF_{3}
B) BeH_{2}
C) SO_{2}
D) CF_{4}
E) $\mathrm{SO}_{3}{ }^{2-}$

SECTION B (Answer any two questions in this section)

Question One

a) Determine the volume, in milliliters, of $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ that is needed to make 450 mL of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
b) In a titration experiment, 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is required to neutralize 20.0 mL of NaOH solution. Determine the concentration of the NaOH solution.
c) The quantity of Cl^{-}in a municipal water supply is determined by titrating the sample with Ag^{+}. The precipitation reaction taking place during the titration is

$$
\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{AgCl}(s)
$$

The end point in this type of titration is marked by a change in color of a special type of indicator. (a) How many grams of chloride ion are in a sample of the water if 20.2 mL of $0.100 \mathrm{M} \mathrm{Ag}^{+}$is needed to react with all the chloride in the sample? (b) If the sample has a mass of 10.0 g , what percent Cl^{-}does it contain?
d) Name the following compounds: (i) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (ii) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (iii) SO_{3} (iv) $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Question Two

a) Antimony, Sb , has two stable isotopes: $\mathrm{Sb}-121$, mass $=120.904 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{Sb}-123$, mass $=122.904 \mathrm{~g} / \mathrm{mol}$. What are the relative abundances of these isotopes?
b) Which family of elements is characterized by an $n s^{2} n p^{2}$ electron configuration in the outermost occupied shell? Give symbols for four of the elements in the family.
(c) (i) Based on its position in the periodic table, write the condensed electron configuration for bismuth, whose symbol is Bi. (ii) How many unpaired electrons does a bismuth atom have?
d) Use the periodic table to write the condensed electron configuration for (i) Ca^{2+} (ii) S^{2-}
e) Sodium sulphide, $\mathrm{Na}_{2} \mathrm{~S}$, is used in the leather industry to remove hair from hides. The compound is made by the reaction

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+4 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{~S}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g})
$$

Suppose you mix 15 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and 7.5 g of carbon. Which is the limiting reactant? What mass of $\mathrm{Na}_{2} \mathrm{~S}$ is expected to be produced?

Question Three

a) Which of the following atoms and ions is largest: $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{O}^{2-}$?
b) Write formula of the compound you expect to form when lithium, Li, reacts with nitrogen, N.
c) Which has the lowest first ionization energy, $\mathrm{B}, \mathrm{Al}, \mathrm{C}$, or Si ? Which has the highest?
[2]
d) Write the balanced chemical equation for the reaction of solid tetraphosphorus hexoxide, $\mathrm{P}_{4} \mathrm{O}_{10}$, with water.
e) Which substance do you expect to have the greatest lattice energy, $\mathrm{MgF}_{2}, \mathrm{CaF}_{2}$, or ZrO_{2} ?
[3]
f) Give the Lewis structure of each of the species SF_{2} and the nitrate ion, NO_{3}^{-}. For each of the species, calculate and indicate the formal charge of each atom.

CHE151 EXAM DATA: Solubility Rules

Soluble lonic Compounds		Important Exceptions
Compounds containing	$\mathrm{NO}_{3}{ }^{-}$	None
	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	None
	Cl^{-}	Compounds of $\mathrm{Ag}^{+}, \mathrm{Hgg}^{2+}$, and Pb^{2+}
	Br^{-}	Compounds of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+}
	I-	Compounds of $\mathrm{Ag}^{+}, \mathrm{Hgg}^{2+}$, and Pb^{2+}
	$\mathrm{SO}_{4}{ }^{2-}$	Compounds of $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+}
Insoluble Ionic Compounds		Important Exceptions
Compounds containing	s^{2-}	Compounds of $\mathrm{NH}_{4}{ }^{+}$, the alkali metal cations, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Ba^{2+}
	$\mathrm{CO}_{3}{ }^{2-}$	Compounds of $\mathrm{NH}_{4}{ }^{+}$and the alkali metal cations
	$\mathrm{PO}_{4}{ }^{3-}$	Compounds of $\mathrm{NH}_{4}{ }^{+}$and the alkali metal cations
	OH^{-}	Compounds of $\mathrm{NH}_{4}{ }^{+}$, the alkali metal cations, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Ba^{2+}

CHE151/C201 Exam Section'今'Answer Sheet. Stud ID No.
Programme:

Ques No.	Letter corresponding to the correct answer	Ques No.	Letter corresponding to the correct answer
1		26	
2		27.	
3		28	
4		29	
5		30	
6		31	
7		32	
8		33	
9		34	
10		35	
11		36	
12	-	37	
13		38	
14	.	39	-
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	-
24		49	
25		50	

PERIODIC TABLE OF THE ELEMENTS

GROUPS

Lanthanlde series

* Actinide serles

$\underset{58}{140.115}$	$\begin{gathered} 140.908 \\ \mathbf{P r} \\ 59 \end{gathered}$	144.24 Nd 60	${\stackrel{(145)}{\mathrm{P}} \mathrm{~mm}_{61}}^{2}$	$\mathrm{Sm}_{62}^{150.36}$	$\begin{aligned} & 151.96 \\ & \mathbf{E u} \end{aligned}$	157.25 Gd 64	$\underset{65}{158.925}$	${\underset{66}{162.50}}^{\mathbf{D}}$	164.930 Ho 67.	$\underset{68}{167.26}$	$\begin{gathered} 18.934 \\ \substack{1894 \\ \hline 69 \\ \hline} \end{gathered}$	${\underset{\sim}{10}}_{17.04}^{\mathbf{Y}}$	$\mathbf{L u}_{\mathbf{7 1}}^{174.967}$
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	$\mathbf{P a}$	U	Np	$\mathbf{P u}$	Am	Cm	BK	Cf	Es	F1m	Md	No	Lr
90	91	92	93	94	95	96.	97	98	99	100	101	102	103

Numbers below the symbol the element indicales the atomic
numbers. Atomic masses, above the symbol of the element, are
based on the assigned relative alomic mass of ${ }^{2} \mathrm{C}=$ exactly 12) indicates the mass number of the isotope with the longest halt-lie.

SOURCE: International Union of Pure and Applied Chemistry, l. Mills, ed., Quantities, Units, and Symbols in Physical Chemisrry, Blackwell Scientific Publications, Boston, 198符, pp 86-98.

Avogadro's number atomic mass unit charge of the electron (orproton) Faraday constant mass of the electron mass of the neutron mass of the proton Planck's constant speed of light in a vacuum standard acceleration of gravity universal gas constant
$\mathrm{A}_{\mathrm{A}}=602214 \times 10^{23} / \mathrm{mol}$ $\mathrm{amu}=166054 \times 10^{-27} \mathrm{~kg}$
e, $1.60218 \times 10^{-19} \mathrm{C}$
$F, \angle 19.64853 \times 10^{4} \mathrm{Cmol}$
$m_{e}-9.10939 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{n}}=187493 \times 10^{-27} \mathrm{~kg}$
$m_{0}-1.67262 \times 10^{-27} \mathrm{~kg}$
$h=6.62607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\mathrm{c}+299792 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
$g+=980665 \mathrm{~m} / \mathrm{s}^{2}$
$R-831447 \mathrm{~J}(\mathrm{~mol} \mathrm{~K})$
$=8.20578 \times 10^{-2}(\mathrm{~atm} \cdot \mathrm{~L}) /(\mathrm{mol} \cdot \mathrm{K})$

Rydberg constant $=1.097 \times 10^{7} \mathrm{~m}^{-1}$
SI Unit Prefixes

Conversions and Relationships

