UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS ACADEMIC YEAR 2017/2018

The second secon

TITLE OF PAPER: INTRODUCTORY CHEMISTRY

COURSE NUMBER: CHE151

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE TWO SECTIONS: SECTION A AND SECTION B. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY TWO QUESTIONS FROM SECTION B.

SECTION A IS WORTH 50 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

THE ANSWER SHEET FOR SECTION A IS ATTACHED TO THE QUESTION PAPER.GIVE YOUR ANSWERS TO SECTION A QUESTIONS RECORDING ON THE ANSWER SHEET THE LETTER CORRESPONDING TO THE CORRECT ANSWER.

AT THE END OF THE EXAM, BEFORE YOU LEAVE, PLACE THE ANSWER SHEET INSIDE THE UNISWA ANSWER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A (Answer ALL the questions in this section)

1)	Vanadium has two naturally occurring isotopes, ⁵⁰ V with an atomic mass of 49.9472 amu and ⁵¹ V with an atomic mass of 50.9440. The atomic weight of vanadium is								
	50.9415. The percent abundances of the vanadium isotopes are% 50V and% 51V.								
	A) 0.25, 99.75								
	B) 99.75, 0.25								
	C) 49, 51								
	D) 1.0, 99								
	E) 99, 1.0								
2)	An unknown element is found to have three naturally occurring isotopes with atomic masses of 35.9675 (0.337%), 37.9627 (0.063%), and 39.9624 (99.600%). Which of the following is the unknown element?								
	A) Ar								
	B) K								
	C) Cl								
	D) Ca								
	E) None of the above could be the unknown element.								
3)	In the periodic table, the elements are arranged in A) alphabetical order								
	B) order of increasing atomic number								
	C) order of increasing metallic properties								
	D) order of increasing neutron content								
	E) reverse alphabetical order								
4)	Elements exhibit similar physical and chemical properties.								
•,	A) with similar chemical symbols								
	B) with similar atomic masses								
	C) in the same period of the periodic table								
	D) on opposite sides of the periodic table								
	E) in the same group of the periodic table								
5)	Which pair of elements would you expect to exhibit the greatest similarity in their								
٥)	physical and chemical properties?								
	A) H, Li								
	B) Cs, Ba								
	C) Ca, Sr								
	D) Ga, Ge								
	E) C, O								

6)	Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties? A) O, S B) C, N C) K, Ca D) H, He E) Si, P
7)	Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties? A) As, Br B) Mg, Al C) I, At D) Br, Kr E) N,O
8)	The elements in groups 1A, 6A, and 7A are called,, respectively. A) alkaline earth metals, halogens, and chalcogens B) alkali metals, chalcogens, and halogens C) alkali metals, halogens, and noble gases D) alkaline earth metals, transition metals, and halogens E) halogens, transition metals, and alkali metals
9)	Which pair of elements below should be the most similar in chemical properties? A) C and O B) B and As C) I and Br D) K and Kr E) Cs and He
10)	An element in the upper right corner of the periodic table A) is either a metal or metalloid B) is definitely a metal C) is either a metalloid or a non-metal D) is definitely a non-metal E) is definitely a metalloid
11)	An element that appears in the lower left corner of the periodic table is A) either a metal or metalloid B) definitely a metal C) either a metalloid or a non-metal

- D) definitely a non-metal
- E) definitely a metalloid
- What is the maximum mass in grams of NH₃ that can be produced by the reaction of 1.0 12) g of N₂ with 3.0 g of H₂ via the equation below?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

- A) 2.0
- B) 1.2
- C) 0.61
- D) 17
- E) 4.0
- What is the maximum amount in grams of SO3 that can be produced by the reaction of 13) 1.0 g of S with 1.0 g of O₂ via the equation below?

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$

- A) 0.27
- B) 1.7
- C) 2.5
- D) 3.8
- E) 2.0
- 14) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

The maximum amount of Al₂O₃ that can be produced from 2.5 g of Al and 2.5 g of O₂ is

- A) 9.4
- B) 7.4
- C) 4.7
- D) 5.3
- E) 5.0

15) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$S(s) + 3F_3(g) \rightarrow SF_6(g)$$

The maximum amount of SF₆ that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is _____ g.

- A) 12
- B) 3.2
- C) 5.8
- D) 16
- E) 8.0

Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O₂ produced 3.5 g of Al₂O₃. The % yield of the reaction is _____.

- A) 74
- B) 37
- C) 47
- D) 66
- E) 26

17) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$

In a particular experiment, the reaction of 1.0 g S with 1.0 g O₂ produced 0.80 g of SO₃. The % yield in this experiment is

- A)30
- B) 29
- C) 21
- D) 88
- E) 48

18)	Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:
	$S(s) + 3F_2(g) \rightarrow SF_6(g)$
	In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a 7.90-g sample of fluorine yields g of SF ₆ .
	A) 30.3
	B) 10.1
	C) 7.99
	D) 24.0
	E) 0.110
19)	Which one of the following is a correct expression for molarity?
···· /	A) mol solute/L solvent
	B) mol solute/mL solvent
	C) mmol solute/mL solution
	D) mol solute/kg solvent
	E) μmol solute/L solution
20)	Which one of the following is <u>not</u> true concerning 2.00 L of 0.100 M solution of Ca ₃ (PO ₄) ₂ ?
	A) This solution contains 0.200 mol of Ca ₃ (PO ₄) ₂ .
	B) This solution contains 0.800 mol of oxygen atoms.
	C) 1.00 L of this solution is required to furnish 0.300 mol of Ca ²⁺ ions.
	D) There are 6.02×10^{22} phosphorus atoms in 500.0 mL of this solution.
	E) This solution contains 6.67×10^{-2} mol of Ca ²⁺ .
21)	A 0.200 M K ₂ SO ₄ solution is produced by
	A) dilution of 250.0 mL of 1.00 M K ₂ SO ₄ to 1.00 L
	B) dissolving 43.6 g of K ₂ SO ₄ in water and diluting to a total volume of 250.0 mL
	C) diluting 20.0 mL of 5.00 M K ₂ SO ₄ solution to 500.0 mL
	D) dissolving 20.2 g of K ₂ SO ₄ in water and diluting to 250.0 mL, then diluting 25.0 mL
	of this solution to a total volume of 500.0 mL
	E) dilution of 1.00 mL of 250 M K ₂ SO ₃ to 1.00 L
22)	Which solution has the same number of moles of NaOH as 50.00 mL of 0.100M solution of NaOH?

A) 20.00 mL of 0.200*M* solution of NaOH B) 25.00 mL of 0.175*M* solution of NaOH C) 30.00 mL of 0.145*M* solution of NaOH D) 50.00 mL of 0.125*M* solution of NaOH E) 100.00 mL of 0.0500*M* solution of NaOH

23)	KCl? A) 20.0 mL of 0.200M solution of KCl B) 25.0 mL of 0.175M solution of KCl C) 129 mL of 0.145M solution of KCl D) 50.0 mL of 0.125M solution of KCl E) 100 mL of 0.0500M solution of KCl
24)	What are the respective concentrations (M) of Fe ³⁺ and I ⁻ afforded by dissolving 0.200 mol FeI ₃ in water and diluting to 725 mL? A) 0.276 and 0.828 B) 0.828 and 0.276 C) 0.276 and 0.276 D) 0.145 and 0.435 E) 0.145 and 0.0483
25)	What are the respective concentrations (M) of Mg ⁺² and C ₂ H ₃ O ₂ - afforded by dissolving 0.600 mol Mg(C ₂ H ₃ O ₂) ₂ in water and diluting to 135 mL? A) 0.444 and 0.889 B) 0.0444 and 0.0889 C) 0.889 and 0.444 D) 0.444 and 0.444 E) 4.44 and 8.89
26)	What are the respective concentrations (M) of Cu ⁺² and Cl ⁻ afforded by dissolving 0.200 mol CuCl ₂ in water and diluting to 345 mL? A) 0.200 and 0.200 B) 0.580 and 1.16 C) 0.200 and 0.400 D) 1.16 and 2.32 E) 0.580 and 0.290
27)	A tenfold dilution of a sample solution can be obtained by taking A) 1 part sample and 9 parts solvent B) 1 part sample and 10 parts solvent C) 9 parts sample and 1 part solvent D) 10 parts sample and 1 part solvent E) 99 parts sample and 1 part solvent

The same of the sa

28)	Mixing 10.00 mL of an aqueous solution with 10.00 mL of water represents a
	A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	A) crystallization
	B) neutralization
	C) twofold dilution
	D) tenfold dilution
	E) titration
29)	You are given two clear solutions of the same unknown monoprotic acid, but with different concentrations. Which statement is true?
	A) There is no chemical method designed to tell the two solutions apart.
	B) It would take more base solution (per milliliter of the unknown solution) to neutralize
	the more concentrated solution.
	C) A smaller volume of the less concentrated solution contains the same number of moles of the acid compared to the more concentrated solution.
	D) If the same volume of each sample was taken, then more base solution would be
	required to neutralize the one with lower concentration.
	E) The product of concentration and volume of the less concentrated solution equals the
	product of concentration and volume of the more concentrated solution.
30)	A 0.100 M solution of will contain the highest concentration of potassium
30)	ions.
	A) potassium phosphate
	B) potassium hydrogen carbonate
	C) potassium hypochlorite
	D) potassium iodide
	E) potassium oxide
	L) poussium exide
31)	The ground-state electron configuration of the element is [Kr]5s ¹ 4d ⁵ .
·	A) Nb
	B) Mo
	C) Cr
	D) Mn
	E) Tc
32)	The ground-state electron configuration of is [Ar]4s ¹ 3d ⁵ .
	A) V
	B) Mn
	C) Fe
	D) Cr
	E) K

The same of the sa

33)	Which one of the following config A) $1s^22s^22p^2$ B) $1s^22s^22p^23s^2$			cited oxygen atom? D) 1s ² 2s ² 2p ⁴
	E) [He]2s ² 2p ⁴	-	<u>r</u>	_, _r
34)	Which one of the following config A) 1s ² 2s ² 2p ¹ 3s ¹ B) 1s ² 2s ² 2p ³ C) 1s ² 2s ² 2p ¹ D) 1s ² 2s ² 3s ¹ E) 1s ² 2s ² 2p ²	gurations d	epicts an ex	cited carbon atom?
35)	How many different principal quarconfiguration of nickel? A) 2 B) 3 C) 4 D) 5 E) 6	ntum numl	bers can be	found in the ground state electron
36)	The valence shell of the element X shell, element X has 5 electrons in A) main group element B) chalcogen C) halogen D) transition metal E) alkali metal			
37)	Atomic radius generally increases A) down a group and from right to B) up a group and from left to right C) down a group and from left to r D) up a group and from right to left be be down a group; the period position	o left acros nt across a right acros ft across a	s a period period s a period period	·
38)	Atomic radius generally decreases A) down a group and from right to B) up a group and from left to right C) down a group and from left to D) up a group and from right to left b) down a group; the period positi	o left acros nt across a right acros ft across a	s a period period s a period period	•

39)	Of the following, which gives the correct	order for atomic radius for Mg, Na, P, Si and
,	Ar?	
	A) Mg > Na > P > Si > Ar	
	B) $Ar > Si > P > Na > Mg$	<u> </u>
	C) $Si > P > Ar > Na > Mg$	
	D) Na $>$ Mg $>$ Si $>$ P $>$ Ar	, 1

Of the following, which gives the correct order for atomic radius for Ca, K, As, Ge and Kr?
 A) Ca > K > As > Ge > Kr

E) Ar > P > Si > Mg > Na

41) Which one of the following atoms has the largest radius?
A) O
B) F
C) S

D) Cl E) Ne

E) RbF

Of the compounds below, _____ has the smallest ionic separation.
A) KF
B) K₂S
C) RbCl
D) SrBr₂

43) _____ is isoelectronic with argon and _____ is isoelectronic with neon.

A) Cl⁻, F⁻

B) Cl⁻, Cl⁺
C) F+, F⁻
D) Ne⁻, Kr⁺

E) Ne⁻, Ar⁺

44)

Which of the following is an isoelectronic series?

A) B⁵-, Si⁴-, As³-, Te²-B) F⁻, Cl⁻, Br⁻, I⁻ C) S, Cl, Ar, K

D) Si^{2-} , P^{2-} , S^{2-} , Cl^{2-}

E) O²-, F-, Ne, Na⁺

- Which isoelectronic series is correctly arranged in order of increasing radius? 45)
 - A) $K^+ < Ca^{2+} < Ar < Cl^-$
 - B) $Cl^- < Ar < K^+ < Ca^{2+}$
 - C) $Ca^{2+} < Ar < K^+ < Cl^-$.
 - D) $Ca^{2+} < K^+ < Ar < Cl^-$
 - E) $Ca^{2+} < K^+ < Cl^- < Ar$
- 46) The Lewis structure of the CO₃²⁻ ion is _____

- 47) A valid Lewis structure of _____ cannot be drawn without violating the octet rule.
- A) PO₄3-
- B) SiF₄
- C) CF₄
- D) SeF₄
- E) NF₃
- 48) The central atom in _____ does not violate the octet rule.
- A) SF₄
- B) KrF2
- C) CF₄
- D) XeF₄
- E) ICl₄-

- LAN A RESTAURANT

49) The central atom in ______ violates the octet rule.

A) NH₃

B) SeF₂

C) BF₃

D) AsF₃

E) CF₄

50) A valid Lewis structure of _____ cannot be drawn without violating the octet rule.

A) NF₃

B) BeH₂

C) SO₂

D) CF₄

E) SO₃²-

SECTION B (Answer any two questions in this section)

Question One

a) Determine the volume, in milliliters, of 3.0 M H₂SO₄ that is needed to make 450 mL of 0.10 M H₂SO₄.

[4]

and the second second

b) In a titration experiment, 45.7 mL of 0.500 M H₂SO₄ is required to neutralize 20.0 mL of NaOH solution. Determine the concentration of the NaOH solution.

[6]

c) The quantity of Cl⁻ in a municipal water supply is determined by titrating the sample with Ag⁺. The precipitation reaction taking place during the titration is

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

The end point in this type of titration is marked by a change in color of a special type of indicator. (a) How many grams of chloride ion are in a sample of the water if 20.2 mL of 0.100 M Ag⁺ is needed to react with all the chloride in the sample? (b) If the sample has a mass of 10.0 g, what percent Cl⁻ does it contain?

[7]

d) Name the following compounds: (i) CaSO₄.2H₂O (ii) Cu(NO₃)₂ (iii) SO₃ (iv) Fe₂O₃

[8]

Question Two

- a) Antimony, Sb, has two stable isotopes: Sb-121, mass = 120.904 g/mol and Sb-123, mass = 122.904 g/mol. What are the relative abundances of these isotopes?
- b) Which family of elements is characterized by an ns^2np^2 electron configuration in the outermost occupied shell? Give symbols for four of the elements in the family.
- (c) (i) Based on its position in the periodic table, write the condensed electron configuration for bismuth, whose symbol is Bi. (ii) How many unpaired electrons does a bismuth atom have?

 [4]
- d) Use the periodic table to write the condensed electron configuration for (i) Ca²⁺ (ii) S²⁻

[4]

e) Sodium sulphide, Na₂S, is used in the leather industry to remove hair from hides. The compound is made by the reaction

$$Na_2SO_4(s) + 4C(s) \rightarrow Na_2S(s) + 4CO(g)$$

Suppose you mix 15 g of Na₂SO₄ and 7.5 g of carbon. Which is the limiting reactant? What mass of Na₂S is expected to be produced?

[8]

The same of the sa

Question Three

- a) Which of the following atoms and ions is largest: S²⁻, S, O²⁻? [2]
- b) Write formula of the compound you expect to form when lithium, Li, reacts with nitrogen, N. [3]
- c) Which has the lowest first ionization energy, B, Al, C, or Si? Which has the highest? [2]
- d) Write the balanced chemical equation for the reaction of solid tetraphosphorus hexoxide, P₄O₁₀, with water. [2]
- e) Which substance do you expect to have the greatest lattice energy, MgF₂, CaF₂, or ZrO₂? [3]
- f) Give the Lewis structure of each of the species SF_2 and the nitrate ion, NO_3^- . For each of the species, calculate and indicate the formal charge of each atom.

[13]

CHE151 EXAM DATA: Solubility Rules

Soluble Ionic Compounds		Important Exceptions
Compounds containing	NO ₃	None
	CH ₃ COO ⁻	None
	CI ⁻	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
	Br ⁻	Compounds of Ag+, Hg22+, and Pb2+
	I_	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
	SO ₄ 2	Compounds of Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Insoluble Ionic Compounds		Important Exceptions
Compounds containing	S ²⁻	Compounds of NH ₄ ⁺ , the alkali metal cations, Ca ²⁺ , Sr ²⁺ , and Ba ²⁺
-	CO ₃ 2-	Compounds of NH ₄ ⁺ and the alkali metal cations
	PO ₄ 3-	Compounds of NH ₄ ⁺ and the alkali metal cations
	OH	Compounds of NH ₄ +, the alkali metal cations, Ca ²⁺ , Sr ²⁺ , and Ba ²⁺

© 2012 Pearson Education, Inc.

CHE151/C201 Exam Section Answer Sheet. Stud ID No.

Programme:

Ques No.	Letter corresponding to the correct answer	Ques No.	Letter corresponding to the correct answer
1		26	
2		27.	
3		28	
4		29	
5		30	
6		31	
7		32	. 40
8		33	·
9		34	
10		35	
11		36	•
12	·	37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19	1	44	
20		45	
21	10 10 10 10 10 10 10 10 10 10 10 10 10 1	46	
22		47	
23		48	
24	,	49	
25		50	

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	llA	IIIB	IVB	VB.	VIB	VIIB		VIII		IB .	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1		,														4.003 He 2	
2	6.941 Li 3	9.012 Be 4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													Ne	
3	22.990 Na 11	24.305 Mg 12	·	TRANSITION ELEMENTS 26.982											39.948 Ar 18			
4	39.0983 K 19	40.078 Ca 20	44,956 Sc 21	47.88 Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 AS 33	78.96 Se 34	79.904 Br 35	83.80 K r 36
5	85.468 Rb · 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo	98.907 Tc 43	101.07 Ru -44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn. 50.	121.75 Sb 51	127.60 Te 52	126.904 I 53	131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56,	138.906 * La 57	178.49 Hf 72	180.948 Ta 73	183.85 W	186.207 Re 75	190.2 Os 76	192.22 Ir -77	195.08 Pt 78	196,967 Au 79	200.59 Hg 80	204.383 T1	207:2 Pb 82,	208.986 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra 88	(227) ** Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns	(265) Uno 108	(266) Une 109									

* 1	anti	าลก	ide	seri	es

** Actinide series

140.115	140.908	144.24	Pm 61	150.36	151.96	157.25	158.925	162.50	164,930	167.26	168.934	173.04	174,967
Ce	Pr	Nd		Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60		62	63	64	65	66	67	68	69	\$6	71
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	. (252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ¹²C = exactly 12; () indicates the mass number of the isotope with the longest half-life

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

Fundamental Physical Constants (six significant figures)

Avogadro's number	$N_{\rm A} = 6.02214 \times 10^{23} / \text{mol}$
atomic mass unit	$amu = 1.66054 \times 10^{-27} \text{ kg}$
charge of the electron (or proton)	
Paraday constant	$F = 9.64853 \times 10^4 \text{ C/mol}$
mass of the electron	$m_e = 9.10939 \times 10^{-31} \text{ kg}$
mass of the neutron	$m_n = 1.67493 \times 10^{-27} \mathrm{kg}$
mass of the proton	$m_{\rm p} = 1.67262 \times 10^{-27} \rm kg$
Planck's constant	$h = 6.62607 \times 10^{-34} \text{ J·s}$
speed of light in a vacuum	$c = 2.99792 \times 10^8 \text{ m/s}$
standard acceleration of gravity	$g = 9.80665 \text{ m/s}^2$
universal gas constant	R = 8.31447 J/(mol·K)
	= $8.20578 \times 10^{-2} (atm \cdot L)/(mol \cdot K)$
1 4 T T T T T T T T T T T T T T T T T T	こういっきりゅうこう ちはこれ間にく こうこう こうん ちゃれぎ こうさ 一議 ニュー・ラーコーラー コーデー

Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$

૱ૡૹૹ૽૽ૢૺઌ ૱૱ૺૺૺૺૺૺૺૺૺૺૹઌ૽૽ૺઌ૽૽ૡ૿૽

W-1400 21 11

SI Unit Prefixes

p	n .	μ m, c d k M	G
pico-	nano-	micro- milli- centi- deci- kilo mega-	giga-
10^{-12}	10-9	10^{-6} 10^{-3} 10^{-2} 10^{-1} 10^{3} 10^{6}	109

Conversions and Relationships

Length

SI unit: meter, m

1 km = 1000 m = 0.62 mile (mi) 1 inch (in) = 2.54 cm

1 m = 1.094 yards (yd) 1 pm = $10^{-12} \text{ m} = 0.01 \text{ Å}$

Mass

SI unit: kilogram, kg

1 kg = 10^3 g = 2.205 lb 1 metric ton (t) = 10^3 kg

Volume.

SI unit: cubic meter, m

1 dm³ = 10⁻³ m³ = 1 liter (L) = 1.057 quarts (qt) 1 cm³ = 1 mL 1 m³ = 35.3 ft³

Energy

, SI unit: joule, J

1 J = 1 kg·m²/s² = 1 coulomb·volf (1 C·V) 1 cal = 4.184 J 1 cy = 1.602×10⁻¹⁹ J

Temperature

SI unit: kelyin, K

0 K = -273.15°C mp of H₂O = 0°C (273.15 K) bp of H₂O = 100°C (373.15 K) T (K) = T (°C) + 273.15 T (°C) = [T (°F) - 32] $\frac{15}{5}$ T (°F) = $\frac{2}{5}$ T (°C) + 32

Pressure

SI unit: pascal, Pa

1 Pa = 1 N/m² = 1 kg/m·s² 1 atm = 1.01325×10⁵ Pa = 760 torr 1 bar = 1×10⁵ Pa

Math relationships

 $\pi = 3.1416$ volume of sphere = $\frac{4}{3}\pi r^3$ volume of cylinder = $\pi r^2 h$