UNIVERSITY OF SWAZILAND

RE-SIT EXAMINATION - 2018, JULY

TITLE OF PAPER : Introductory Chemistry II

COURSE NUMBER : CHE 152

TIME
: Three Hours

INSTRUCTIONS

1. Answer all questions in Section A (Total 50 marks)
2. Answer any two questions in Section \mathbf{B} (each question is 25 marks)

NB: Non-programmable electronic calculators may be used

A data sheet, a periodic table and answer sheet (for Section A) are attached
Useful data and equations:

1 atm $=760$ Torr $=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
Arrhenius equation: $k=A e^{-E_{a} / R T} \quad$ or $\quad \ln k=\ln A-\frac{E_{a}}{R T}$

Van der Walls equation:

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

Question 1

a. Differentiate between effusion and diffusion of gas molecules.
b. At $25^{\circ} \mathrm{C}, 0.350$ moles of $\mathrm{CH}_{4(\mathrm{~g})}, 0.240$ mole of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.500 mole of $\mathrm{N}_{2(\mathrm{~g})}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask.
c. 8.0 grams of argon and 25.0 grams of neon are placed in a 1200.0 ml container at $25.0^{\circ} \mathrm{C}$. Calculate the partial pressures of both gases.

Question 2

a. Write the thermochemical equations that give values of the standard enthalphies of formation for the following:
i. $\mathrm{Al}_{2} \mathrm{O}_{3(s)}$
ii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$
iii. $\mathrm{CH}_{6} \mathrm{~N}_{2(1)}$
iv. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}_{(1)}$
v. $\mathrm{CaCO}_{3(5)}$
b. Calculate ΔH for the reaction

$$
\begin{equation*}
2 \mathrm{C}(s)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(g) \tag{10}
\end{equation*}
$$

given the following chemical equations and their respective enthalpy changes:

$$
\begin{array}{rlrl}
\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) & \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H & =-1299.6 \mathrm{~kJ} \\
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H & =-393.5 \mathrm{~kJ} \\
\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H & =-285.8 \mathrm{~kJ}
\end{array}
$$

c. The combustion of methylhydrazine $\left(\mathrm{CH}_{6} \mathrm{~N}_{2}\right)$, a liquid rocket fuel, produces $\mathrm{N}_{2}(g), \mathrm{CO}_{2}(\mathrm{~g})$, and $\mathrm{H}_{2} \mathrm{O}(I)$:

$$
2 \mathrm{CH}_{6} \mathrm{~N}_{2}(I)+5 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{~N}_{2}(g)+2 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

When 6.00 g of methylhydrazine is combusted in a bomb calorimeter, the temperature of the calorimeter increases from $25.00^{\circ} \mathrm{C}$ to $39.50^{\circ} \mathrm{C}$. In a separate experiment the heat capacity of the calorimeter was measured to be $7.794 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Calculate the heat of reaction for the combustion of a mole of $\mathrm{CH}_{6} \mathrm{~N}_{2}$.

Question 3

a. A household cleaning reagent has a hydroxide concentration of 0.0032 M . Calculate the $\left[\mathrm{H}_{3} \mathrm{O}+\right], \mathrm{pH}$ and pOH for this solution.
b. A student prepared a 0.10 M solution of formic acid (HCOOH) and found its pH at $25^{\circ} \mathrm{C}$ to be 2.38. Calculate K_{a} for formic acid at this temperature.
c. In a sample of lemon juice, $\left[\mathrm{H}^{+}\right]=3.8 \times 10^{-4} \mathrm{M}$. What is the pH ?

Question 4

a. The data in the table below were obtained for the reaction:

$$
\begin{equation*}
A+B \rightarrow P \tag{9}
\end{equation*}
$$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

i. What is the order of the reaction in [A]
ii. What is the order of the reaction in [B]
iii. Write the rate law for the reaction,
iv. What is the overall order of this reaction?
b. For the reaction

$$
\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \quad \Delta H^{\circ}=87.9 \mathrm{~kJ}
$$

in which direction will the equilibrium shift when
i. $\quad \mathrm{Cl}_{2}(g)$ is added,
ii. the temperature is increased,
iii. the volume of the reaction system is increased,
iv. $\quad \mathrm{PCl}_{3}(g)$ is removed?
c. If the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ at a particular instant is $4.2 \times 10^{-7} \mathrm{M} / \mathrm{s}$, what is the rate of appearance of
i. $\quad \mathrm{NO}_{2}$ and
ii. O_{2} at that instant?

Question 5

a. Draw the structures of the following compounds:
i. 2,4-dimethyl-1-pentene
ii. 3-ethyl-2-methylpentane
iii. 2,4-dichloro-2-pentyne
iv. 2,5,6-trimethylnonane
v. 3-bromocyclohexanone
vi. 2,4-dimethyl-hexanoic acid
vii. 3-ethoxy-5-methyl-octanal
viii. Methyl-cyclobutylamine
ix. Isopropyl-butyl ether
x. 3-bromo-6-ethyl-4,4,5-trimethyl-8-nonanol
b. Draw the structure and give the name of the product of the reaction of 4-ethyl-2-methyl-1heptene which HBr .

Question 6

a. Write the equilibrium expression for K_{c} for the following reactions:
i. $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$
ii. $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{NOCl}(g)$

$$
\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q)
$$

iii.
iv. $\mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}^{-}(a q) \rightleftharpoons \mathrm{CdBr}_{4}{ }^{2-}(a q)$
v. $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$
b. For the reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

$K_{p}=794$ at 298 K and $K_{p}=55$ at 700 K . Is the formation of HI favoured more at the higher or lower temperature?
c. After a mixture of hydrogen and nitrogen gases in a reaction vessel is allowed to attain equilibrium at $472^{\circ} \mathrm{C}$, it was found to contain $7.38 \mathrm{~atm} \mathrm{H}_{2}, 2.46 \mathrm{~atm} \mathrm{~N}_{2}$, and $0.166 \mathrm{~atm} \mathrm{NH}_{3}$. From these data, calculate the equilibrium constant K_{p} for the reaction

$$
\begin{equation*}
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \tag{8}
\end{equation*}
$$

d. Given the reactions

$$
\begin{aligned}
\mathrm{HF}(a q) & \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q) & K_{c}=6.8 \times 10^{-4} \\
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) & \rightleftharpoons 2 \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q) & K_{c}=3.8 \times 10^{-6}
\end{aligned}
$$

Determine the value of K_{c} for the reaction

$$
\begin{equation*}
2 \mathrm{HF}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q) \rightleftharpoons 2 \mathrm{~F}^{-}(a q)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \tag{5}
\end{equation*}
$$

SI Units and Conversions

Unit	Symbol	Sl units
Newton	N	$\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$
Pascal	Pa	$\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{m}^{-2}$
Joule	J	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{m}$ or AVs
Watt	W	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3}$ or $\mathrm{J} \cdot \mathrm{s}^{-1}$
Coulomb	C	$\mathrm{A} \cdot \mathrm{s}$
Volt	V	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-1}$ or J. C
Ohm	Ω	$\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}$ or $\cdot \mathrm{A}^{-1}$
Amp	A	Cs^{-1}

Pressure Units and conversion factors

Pa	$1 \mathrm{~Pa}=1 \mathrm{~N} \cdot \mathrm{~m}^{-2}$
Bar	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Atmosphere	$1 \mathrm{~atm}=101.325 \mathrm{kPa}$
Torr	$760 \mathrm{Torr}=1 \mathrm{~atm}$
	760 Torr $=760 \mathrm{mmHg}=101.325 \mathrm{kPa}$

General data and Fundamental Constants

Gas constant	R	$8.31451 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
		$8.31451 \times 10^{-2} \mathrm{~L} \cdot{\mathrm{bar} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$
		$8.20578 \times 10^{-2} \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
		$62.364 \mathrm{~L} \cdot \mathrm{Torr} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
Avogadro constant	N_{A}	$6.022169 \times 1 \mathrm{ol}^{23} \mathrm{~mol}^{-1}$
Molar volume of an ideal gas	V_{m}	$22.414 \mathrm{dm}^{3}$
at $0^{\circ} \mathrm{C}$ and 1 atm		

UNIVERSITY OF SWAZILAND

Department of Chemistry

Ce 140.2	Pr_{1}	Nd	$\mathbf{P m}$	Sm	Eu	Gd	Tb	$\mathrm{Dy}_{16,50}$	Ho	$\underset{1667.20}{\mathbf{E r}_{1}}$	$\operatorname{Tm}_{168,9]}$	$\mathbf{Y b}$	\mathbf{u}
Th	$\underset{231,0}{\mathrm{~Pa}}$	$\underset{23,0}{\mathbf{U}}$	$\mathbf{N p}$	Pu	Am	$\mathrm{Cm}_{(2+7)}$	$\mathbf{B k}_{24}$	$\mathbf{C f}$	Es	Fm	Md	No	

