UNIVERSITY OF SWAZILAND RE-SIT EXAMINATION – 2018, JULY

		*						
TITLE OF PAPI	ER :	Introductory Chemistry II						
COURSE NUIV	1BER :	CHE 152						
TIME	:	Three Hours						
INSTRUCTION	IS :							
	1. Answer all question	ons in Section A (Total 50 marks)						
2. Answer any two questions in Section B (each question is 25 marks)								
2. Answer any two questions in section b leach question is 25 mar								
NB: Non-programmable electronic calculators may be used								
	A data sheet, a periodic table and answer sheet (for Section A) are attached							
Useful	l data and equations:							
	1 atm = 760 Torr = 76	0 mmHg						
	1 atm = 101325 Pa							
	Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$							
	Van der Walls equation: $P = \frac{nRT}{V-nb} - \frac{n^2a}{V^2}$							

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

Question 1

- a. Differentiate between effusion and diffusion of gas molecules.
- b. At 25°C, 0.350 moles of $CH_{4(g)}$, 0.240 mole of $H_{2(g)}$ and 0.500 mole of $N_{2(g)}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask. (10)
- c. 8.0 grams of argon and 25.0 grams of neon are placed in a 1200.0 ml container at 25.0°C.
 Calculate the partial pressures of both gases. (10)

Question 2

- a. Write the thermochemical equations that give values of the standard enthalphies of formation for the following: (10)
 - i. Al₂O_{3(s)}
 - ii. C₂H₅OH_(i)
 - iii. CH₆N_{2(I)}
 - iv. C₆H₅OH_(I)
 - v. CaCO_{3(s)}
- b. Calculate ΔH for the reaction

$$2 C(s) + H_2(g) \longrightarrow C_2 H_2(g)$$

given the following chemical equations and their respective enthalpy changes:

$$C_{2}H_{2}(g) + \frac{5}{2}O_{2}(g) \longrightarrow 2 CO_{2}(g) + H_{2}O(l) \qquad \Delta H = -1299.6 \text{ kJ}$$

$$C(s) + O_{2}(g) \longrightarrow CO_{2}(g) \qquad \Delta H = -393.5 \text{ kJ}$$

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(l) \qquad \Delta H = -285.8 \text{ kJ}$$

c. The combustion of methylhydrazine (CH₆N₂), a liquid rocket fuel, produces N₂(g), CO₂(g), and H₂O(*l*):

$$2 \operatorname{CH}_6 \operatorname{N}_2(l) + 5 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{N}_2(g) + 2 \operatorname{CO}_2(g) + 6 \operatorname{H}_2 \operatorname{O}(l)$$

When 6.00 g of methylhydrazine is combusted in a bomb calorimeter, the temperature of the calorimeter increases from 25.00°C to 39.50°C. In a separate experiment the heat capacity of the calorimeter was measured to be 7.794 kJ/°C. Calculate the heat of reaction for the combustion of a mole of CH_6N_2 . (5)

Question 3

- a. A household cleaning reagent has a hydroxide concentration of 0.0032 M. Calculate the $[H_3O+]$, pH and pOH for this solution. (9)
- b. A student prepared a 0.10 M solution of formic acid (HCOOH) and found its pH at 25°C to be 2.38. Calculate K_a for formic acid at this temperature. (10)
- c. In a sample of lemon juice, $[H^+] = 3.8 \times 10^{-4} M$. What is the pH? (6)

Question 4

a. The data in the table below were obtained for the reaction: (9)

 $A + B \rightarrow P$

(10)

(5)

n og som en s Det som en som

Experiment			Initial Rate
Number	[A] (M)	[B] (M)	(M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

- i. What is the order of the reaction in [A]
- ii. What is the order of the reaction in [B]
- iii. Write the rate law for the reaction.
- iv. What is the overall order of this reaction?
- b. For the reaction

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g) \qquad \Delta H^\circ = 87.9 \text{ kJ}$$

in which direction will the equilibrium shift when

- i. $Cl_2(g)$ is added,
- ii. the temperature is increased,
- iii. the volume of the reaction system is increased,
- iv. $PCl_3(g)$ is removed?

(8)

(8)

(20)

- c. If the rate of decomposition of N₂O₅ in the reaction 2 N₂O₅(g) \rightarrow 4 NO₂(g) + O₂(g) at a particular instant is 4.2 × 10⁻⁷ *M*/s, what is the rate of appearance of
 - i. NO₂ and
 - ii. O₂ at that instant?

Question 5

- a. Draw the structures of the following compounds:
 - i. 2,4-dimethyl-1-pentene
 - ii. 3-ethyl-2-methylpentane
 - iii. 2,4-dichloro-2-pentyne
 - iv. 2,5,6-trimethylnonane
 - v. 3-bromocyclohexanone
 - vi. 2,4-dimethyl-hexanoic acid
 - vii. 3-ethoxy-5-methyl-octanal
 - viii. Methyl-cyclobutylamine
 - ix. Isopropyl-butyl ether
 - x. 3-bromo-6-ethyl-4,4,5-trimethyl-8-nonanol
- b. Draw the structure and give the name of the product of the reaction of 4-ethyl-2-methyl-1 heptene which HBr. (5)

Question 6

i.

a. Write the equilibrium expression for K_c for the following reactions: (10)

$$2 O_3(g) \rightleftharpoons 3 O_2(g)$$

ii.
$$2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightleftharpoons 2 \operatorname{NOCl}(g)$$

Ag⁺(aq) + $2 \operatorname{NH}_3(aq) \rightleftharpoons \operatorname{Ag}(\operatorname{NH}_3)_2^+(aq)$

iii.

iv.
$$\operatorname{Cd}^{2+}(aq) + 4 \operatorname{Br}^{-}(aq) \rightleftharpoons \operatorname{CdBr_4}^{2-}(aq)$$

v. $\operatorname{H_2}(g) + \operatorname{I_2}(g) \rightleftharpoons 2 \operatorname{HI}(g)$

b. For the reaction:

 $H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$

 K_p = 794 at 298 K and K_p = 55 at 700 K. Is the formation of HI favoured more at the higher or lower temperature? (2)

.

- c. After a mixture of hydrogen and nitrogen gases in a reaction vessel is allowed to attain equilibrium at 472°C, it was found to contain 7.38 atm H₂, 2.46 atm N₂, and 0.166 atm NH₃. From these data, calculate the equilibrium constant K_p for the reaction $N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$ (8)
- d. Given the reactions

$$HF(aq) \Longrightarrow H^{+}(aq) + F^{-}(aq) \qquad K_{c} = 6.8 \times 10^{-4}$$
$$H_{2}C_{2}O_{4}(aq) \Longrightarrow 2 H^{+}(aq) + C_{2}O_{4}^{2-}(aq) \qquad K_{c} = 3.8 \times 10^{-6}$$

Determine the value of K_c for the reaction

$$2 \operatorname{HF}(aq) + \operatorname{C}_2\operatorname{O}_4^{2-}(aq) \rightleftharpoons 2 \operatorname{F}^{-}(aq) + \operatorname{H}_2\operatorname{C}_2\operatorname{O}_4(aq)$$
(5)

SI Units and Conversions

Unit	Symbol	SI units			
Newton	N	kg.m.s ⁻²			
Pascal	Ра	kg.m ⁻¹ .s ⁻² or N.m ⁻²			
Joule	J	kg.m ^{2,5−2} or N.m or AVs			
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹			
Coulomb	С	A.s			
Volt	V	kg.m ² .s ⁻³ .A ⁻¹ or J.C ⁻¹			
Ohm	Ω	kg.m ² .s ⁻³ .A ⁻² or v.A ⁻¹			
Amp	A	1Cs ⁻¹			

Pressure Units and conversion factors

Ра	$I Pa = 1 N.m^{-2}$				
Bar	1 bar = 10 ⁵ Pa				
Atmosphere	1 atm = 101.325 kPa				
Torr	760 Torr = 1 atm				
	760 Torr = 760 mmHg= 101.325 kPa				

General data and Fundamental Constants

Gas constant	R	8.314 51 J.K ⁻¹ .mol ⁻¹			
		8.314 51 x 10 ⁻² L.bar.K ⁻¹ .mol ⁻¹			
		8.205 78 x 10 ⁻² L.atm.K ⁻¹ .mol ⁻¹			
		62.364 L.Torr.K ⁻¹ .mol ⁻¹			
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹			
Molar volume of an ideal gas at 0°C and 1 atm	V _m	22.414 dm ³			

UNIVERSITY OF SWAZILAND Department of Chemistry

-	58	59	60	61	62	63	64	65	66	67	68	69	70	71 4
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	_ 167.26	168.93	173.04	174.97
4	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	237.05	(244)	(234)	(247)	247	(251)	(252)	(257)	(258)	(259)	(260)

1

÷.

٠