# University of Eswatini

# **Department of Computer Science**

Final Main Examination: December 2018

| Title of paper | : Computer Programming II |
|----------------|---------------------------|
| Course Number  | : CSC213/CS244            |

۲

**Time Allowed** : Three (3) hours

۰,۰

This paper may not be opened until permission has been granted by the invigilator

# **INSTRUCTIONS**

- 1. Answer all questions in section A.
- 2. Answer only one (1) question in section B.
- 3. This exam consists of 11 printed pages including the cover page.
- 4. The Exam user\_id, password, tree, context and server name will be provided by the chief invigilator.
- 5. Read the complete question paper carefully before starting to work on the problem.
- 6. Write pseudo codes (hand-written) in the provided answer folder.
- 7. Submit written answer folder and zipped project folder
- 8. Use the last 10 minutes to check your submissions
- 9. The names of all your files( project, source file and output files) should have following format

S-----(Project Name) S-----.cpp (source file)

source me)

S-----.TXT (data files)

The dashes in file names are the six digits of your UNESWA student identity number.

### **SPECIAL REQUIREMENTS:**

- 1. For each student, a standalone PC with working Visual Studio 2010 C++ compiler.
- 2. Students should not have access to the internet.

## **ANSWER FORMAT**

- 1. Where required, write (in your answer folder) a detailed pseudo-code.
- 2. Compile and test your code. Make sure you submit code with no syntax errors. Where necessary comment statements that have syntax errors.
- 3. Provide sufficient comment in your source code.
- 4. Output from your program must be properly formatted.

# DATA

- 1. The required data text files, and ANNEX\_A source files, are stored in the folder EXAM2018\_CSC213\_DATA\_ANNEX and will be provided by the chief invigilator.
- 2. Except where instructed, the data files and the ANNEX source files should not be modified. However, where necessary content can be used in your program.

## **PROBLEM**:

The task is to design a program which can be used to extract and analyse information about the causes of death from three separate files (**CauseOfDeathInfo.txt, CauseData.txt** and **SiteData.txt**). The data is based on verbal autopsy (VA) interviews contributed by fourteen different Health Demographic Surveillance System (HDSS) sites in sub-Saharan Africa and eight sites in Asia. Each HDSS site is committed to long-term longitudinal surveillance of circumscribed populations, typically each covering around 50,000 to 100,000 people. Households are registered and visited regularly with a rate varying from once to several times per year. The given files contain vital events which were registered at each of such visits, and any deaths recorded are followed up with verbal autopsy interviews which can be used to inform probably cause of death. The program must read, combine and extract required information from the three files. The figure that follows shows sample content of the files.

|                                                                                                             |                                                                                      | CauseOfDeathInfo.                                                         | txt                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🖉 CauseOfDeathInfo                                                                                          | - Notepad                                                                            |                                                                           | and the second second                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| File Edit Format                                                                                            | View Help                                                                            | en e                                  | en al a character prese                                                                                                                                                                              | e e e construction de la const |
| sitecode<br>KE021<br>BD011<br>BD011<br>GH031<br>KE021<br>KE021<br>KE021<br>ZA031<br>GH011<br>GH011<br>VN012 | year<br>2005<br>2005<br>2004<br>2004<br>2004<br>2009<br>2009<br>2009<br>2009<br>2009 | agegroup<br>6<br>5<br>5<br>5<br>7<br>6<br>6<br>6<br>5<br>7<br>7<br>7<br>7 | gender<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | causecode<br>70<br>18<br>70<br>23<br>26<br>18<br>23<br>70<br>41<br>18<br>31<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Notes: This file contains 176834 records and may take a longer time to process. For testing purposes, a smaller sample of the file called **train\_cod\_data.txt** (with only 1000 records) is provided in the data folder.

|             | CauseData.txt                    |
|-------------|----------------------------------|
| []] CauseDa | ata - Notepad                    |
| File Edit   | Format View Help                 |
| code        | description                      |
| 10          | 01.01_Sepsis_(non-obstetric) 🔤   |
| 11          | 01.02_Acute_resp_infect_incl_pne |
| 12          | 01.03_HIV/AIDS_related_death     |
| 13          | 01.04_Diarrhoeal_diseases        |
| 14          | 01.05_Malaria                    |
| 15          | 01.06_Measles                    |
| 16          | 01.07_Meningitis_and_encephalit  |
| 17          | 01.08_&_10.05_Tetanus            |
| <           |                                  |

|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              | SiteData.txt                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🗿 SiteData                                                                                                                                                                                                 | - Notepad 🚛 🖆 🖓 👘                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            |
| File Edit                                                                                                                                                                                                  | Format View Help                                                                                                                                                                                                                                             | e de suite produce e est auge l'active qui en en en la carre e active andre aller de suite en suite de suite a                                                                                                                                                                                             |
| code<br>BD011<br>BD012<br>BD013<br>BD014<br>BF031<br>BF041<br>CI011<br>ET031<br>GH011<br>GH031<br>GH011<br>IN011<br>IN011<br>IN011<br>IN021<br>KE021<br>KE031<br>MW011<br>SN011<br>VN012<br>ZA011<br>ZA031 | country<br>Bangladesh<br>Bangladesh<br>Bangladesh<br>Burkina_Faso<br>Burkina_Faso<br>IvoryCost<br>Ethiopia<br>Ghana<br>The_Gambia<br>Indonesia<br>India<br>India<br>Kenya<br>Kenya<br>Kenya<br>Kenya<br>Kenya<br>Kenya<br>Senegal<br>Vietnam<br>South_Africa | name<br>ICDDR-B_:_Matlab<br>ICDDR-B_:_Bandarban<br>ICDDR-B_:_Chakaria<br>ICDDR-B_:_AMK<br>Nouna<br>Ouagadougou<br>Taabo<br>Awlaelo<br>Navrongo<br>Dodowa<br>Farafenni<br>Purworejo<br>Ballabgarh<br>Vadu<br>Kilifi<br>Kisumu<br>Nairobi<br>Karonga<br>Bandafassi<br>Filabavi<br>Agincourt<br>Africa_Centre |

For each of the given fields in the cause of death text file (sitecode, year, agegroup, gender and causecode), the program must generate and output a token frequency table and a summary of statistics similar to figure shown below. The example given below is for the **year** field values;

| AUSE         | OF DEATH A     | NALYSIS | BY :  | YEAR                                    | OF | DEATH | 1 | <br>  |  |  |  |
|--------------|----------------|---------|-------|-----------------------------------------|----|-------|---|-------|--|--|--|
| Jalue        | #Cases         |         | Perc  | ent                                     |    |       |   | <br>_ |  |  |  |
| 1992         | 292            |         | 0.2   |                                         |    |       |   |       |  |  |  |
| 1993         | 527            |         | 0.3   |                                         |    |       |   |       |  |  |  |
| 1994         | 491            |         | 0.3   |                                         |    |       |   |       |  |  |  |
| 1995         | 581            |         | 0.3   |                                         |    |       |   |       |  |  |  |
| 1996         | 543            |         | 0.3   |                                         |    |       |   |       |  |  |  |
| 1997         | 495            |         | 0.3   |                                         |    |       |   |       |  |  |  |
| 1998         | 1,208          |         | 1.0   | 2                                       |    |       |   |       |  |  |  |
| 1999         | 1774           |         | 1.0   | 2.                                      |    |       |   |       |  |  |  |
| 2000         | 4148           |         | 2.3   | 2                                       |    |       |   |       |  |  |  |
| 2001         | 4567           |         | 2.6   | ~                                       |    |       |   |       |  |  |  |
| 2002<br>2003 | 5056           |         | 2.9   | ~                                       |    |       |   |       |  |  |  |
| 2003<br>2004 | 133Ø3<br>16681 |         | 9.4   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |    |       |   |       |  |  |  |
| 2005         | 17418          |         | 9.8   | 2                                       |    |       |   |       |  |  |  |
| 2005         | 18134          |         | 10.3  |                                         |    |       |   |       |  |  |  |
| 2007         | 17232          |         | 9.7   | 2                                       |    |       |   |       |  |  |  |
| 2008         | 19923          |         | 11.3  |                                         |    |       |   |       |  |  |  |
| 2009         | 20434          |         | 11.6  |                                         |    |       |   |       |  |  |  |
| 2010         | 19375          |         | 11.0  |                                         |    |       |   |       |  |  |  |
| 2011         | 11660          |         | 6.6   | , <i>r.</i><br>%                        |    |       |   |       |  |  |  |
| 2012         | 2492           |         | 1.4   | 2                                       |    |       |   |       |  |  |  |
|              |                |         |       |                                         |    |       |   |       |  |  |  |
| SUMMAI       | RY STATISTI    | CS      |       |                                         |    |       |   |       |  |  |  |
| INTOUT       | TOKEN COU      | NT =    | 21    |                                         |    |       |   |       |  |  |  |
| MEÂÑ         | 0000           |         | 8420. | .67                                     |    |       |   |       |  |  |  |
|              | RD DEVIATI     | ON ==   | 8057  |                                         |    |       |   |       |  |  |  |
|              | IM VALUE       |         | 292   |                                         |    |       |   |       |  |  |  |
|              | IN VALUE       |         | 20434 | ŧ                                       |    |       |   |       |  |  |  |

#### SECTION A

#### (Compulsory – Answer all questions)

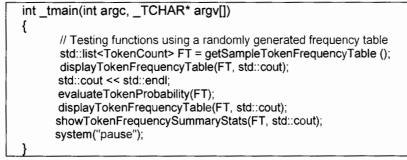
#### **QUESTION 1 – 45 marks**

Based on the definition of **TokenCount** record/structure provided in Annex A, and assuming all token frequency tables are stored as a list of token count records, [for instance **std::list<TokenCount> TokenFrequencyTable**], write suitable code to perform the following tasks which will lead to a possible solution to the given problem.

- (a) Write a function to calculate the probability of a token. The function only takes 2 integer numbers as arguments, the frequency/count of a specific token and total count of all tokens, and returns the ratio of these two numbers expressed as a percentage. [3 marks]
- (b) Write a function that takes a token frequency table (list of token count records) as an argument and computes the sum of all the token counts/frequencies. [5 marks]
- (c) Using the function obtained in (b), write a function that takes a token frequency table (list of token count records) and computes the mean/average of all the token counts or frequencies. The mean is simple the sum of all token counts divided by the number of unique tokens.

#### [5 marks]

(d) Write a function that takes a token frequency table (list of token count records) as an argument, and returns the standard deviation of the token counts or frequencies. Note that given a list of **n** values, say ( $x_1, x_2, ..., x_n$ ), with the mean/average of the values denoted as  $\overline{x}$ , the standard deviation, denoted s, can be calculated using the following


formula: 
$$s = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{x})^2}{n-1}}$$
. [12 marks]

- (e) Write a function that takes a token frequency table (list of token count records) as an argument, and returns the minimum recorded count/frequency. [5 marks]
- (f) Write a function that takes a token frequency table (list of token count records) and returns the maximum recorded count/frequency. [5 marks]
- (g) Using the functions defined in previous tasks, complete the missing code in the function showTokenFrequencySummaryStats provided in ANNEX A. [5 marks]
- (h) Write a function called evaluateTokenProbability that iterates through all token records in a token frequency table and calculates the token probability. This function uses the probability function defined in task 1 above. Here is the suggested prototype for this function.

void evaluateTokenProbability (std::list<TokenCount>& TokenFrequencyTable)

[5 marks]

(i) Test your functions from previous tasks using a randomly generated frequency table as shown in the main function example below. The getSampleTokenFrequencyTable function generates a random frequency table and is provided in ANNEX A folder.



#### **QUESTION 2 – 25 marks**

(a) Whereas the testing code in Question 1 uses a randomly generated token frequency table, we instead want to extract this information from the cause of death text file. Therefore, write a function called extractTokensFromCODFile that takes two arguments (a cause of death text file and a field selector integer value) and extracts all tokens of the selected field from the given cause of death text file to a token frequency table. For instance, the CauseOfDeathInfo.txt contains 5 fields namely: sitecode, year, agegroup, gender and causecode which will be referenced fields 1, 2, 3, 4 and 5 respectively. When the field selector = 1, the function extracts only the sitecode labels to a token frequency table. Similarly, when the field selector = 2, the function extracts only the year labels to a token frequency table. The same applies to all the other fields. All fields are to be treated as strings (labels) not numbers. The function must return a list of token counts. Write proper pseudocode for this function. Here is a recommended prototype for this function:

std::list<TokenCount> extractTokensFromCODFile (char\* codFilename, int fieldSelector)

Whereas the function reads all the field values from an input line, it only extracts to the frequency table the appropriate field value as per the field selector. For each new token, a new token count record, with frequency = 1 and probability=0, is created and inserted into the frequency table. For an existing token, the frequency count is incremented by 1.

[pseudoce(8) + actual code(12) = 20 marks].

(b) Test your functions using the first version of the displaySelectiveAnalysis function provided in ANNEX A. The function can be called in a main function similar to example that follows (if necessary, you can change function names). [5 marks]

int \_tmain(int argc, \_TCHAR\* argv[])
{ //Testing
int fieldSelector = 4; //by gender

return 0;}

displaySelectiveAnalysis(std::cout, fieldSelector);

| C:\User        | s\user\Desktop\C                    | C213_STUFF\CSC213_EXAM_DEC2018\Dec2018_SampleSol_v4\ |                                                                                                                 |
|----------------|-------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                |                                     | SIS BY : GENDER OF DECEASED                          |                                                                                                                 |
| 12             | HGaues<br>559<br>434<br>STATISTICS  | Percent<br>56.9 ×<br>43.1 ×                          | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |
| UNIQUE<br>MEAN | COREN COUNT<br>D DEVIATION<br>VALUE | - 2<br>- 560.00<br>- 92.58<br>- 431<br>- 569         |                                                                                                                 |

For testing purposes and in order to save time, test your code using the smaller sample train\_cod\_data.txt input file. That is use the first version of the displaySelectiveAnalysis function. You will eventually need to test your code using the much bigger CauseOfDeathInfo.txt input file, and may need the second version of the displaySelectiveAnalysis function which allows you to specify any filename. The sample results shown in the figure above are based on the bigger CauseOfDeathInfo.txt text file

#### SECTION B

(Answer only one(1) question from this section)

#### **QUESTION 3 – 30 marks**

Based on the code obtained in question 2, change the test code in the main function such that it uses an interactive menu-based user interface. The program must repeatedly display the menu until the exit option is chosen. Write the pseudo code for your main function in the answer folder.

- Option 1 The Full Analysis option writes a report to a text file, say full\_report.txt, containing the analysis (token frequency tables and summary statistics) for each of the five fields (sitecode, year, agegroup, gender, and causecode). In short, the displaySelectiveAnalysis function is called repeatedly with field selector values from 1 to 5.
- Option 2 The Selective analysis option in-turn presents a selective submenu as shown in the figure. When options 1,2,3,4 and 5 are selected, the displaySelectiveAnalysis function is called to display (on the screen/standard output) a corresponding token frequency table and summary statistics. Option 6 returns control to the main menu
- **Option 3** exits the program

[pseudocode(10) + correct interface(30) = **30 marks**]

| MAI   | N MENU       |         |  |
|-------|--------------|---------|--|
|       | ll analysis  |         |  |
|       | ective analy | sis     |  |
| 3. Ex | it.          |         |  |
|       |              |         |  |
| Enter | your choice  | 2(1-3): |  |

| SELECTIVE SUB MENU         |
|----------------------------|
| 1. Cases per Site          |
| 2. Cases per Year          |
| 3. Cases by Age Group      |
| 4. Cases by Gender         |
| 5. Cases by Cause of Death |
| 6. Return to main menu     |
| Enter your choice (1-6):   |

#### **QUESTION 4 – 30 marks**

- (a) Define a site record structure, called Site, to store site information. That is the structure must have fields for the site code, country and name [3 marks]
- (b) Define a function called initSiteData that initializes a site record. The function takes as an argument, a site record (as described above), and values for each fields. The function simple sets the record fields to the given values. Here is a suggested prototype of the function. [4 marks]

Here is a sample of how the function could be used and tested in the main function

| Sample testing code                                                                 |                                         |
|-------------------------------------------------------------------------------------|-----------------------------------------|
| Site S; //declare site record                                                       |                                         |
| initSiteData (S, "KE021", "Kenya","Kisumu"); // initialize site record              |                                         |
| std::cout << S.code << "\t" << S.country << "\t" << S.name << std::endl;            |                                         |
| Expected result                                                                     |                                         |
| C:\Users\user\Desktop\CSC213_STUFF\CSC213_EXAM_DEC2018\Dec2018_SampleSol_v4\Debug\D |                                         |
| KEO21 Kenya Kisumu                                                                  | And |
| Press any key to continue                                                           |                                         |
|                                                                                     |                                         |
|                                                                                     | een ookernikeringebilde                 |

(c) Write a function, called getSiteData, that extracts specific site details from a given site data text file. The function arguments include the site code and the name of the text file containing the site information, say SiteData.txt. It returns a site record. In the example below the site code is KE021. The function only extracts a single matching record from the given site data text file. In your answer folder write the pseudocode for this function. Here is a suggested prototype for the function: Site getSiteData (const char\* sitecode, char\* siteDataFilename)

[pseudocode(6) + actual code(14) =20 marks]

Here is a sample call to the function and expected results

|             | Sample code                                                                  |
|-------------|------------------------------------------------------------------------------|
| std::string | siteCode = "KE021";                                                          |
| Site S = g  | etSiteData (siteCode.c_str(), "sitedata.txt");                               |
| std::cout < | << S.code << "\t" << S.country << "\t" << S.name << std::endl;               |
|             |                                                                              |
|             | Results                                                                      |
| C:\User     | s\user\Desktop\CSC213_STUFF\CSC213_EXAM_DEC2018\Dec2018_SampleSol_v4\Debug\D |
|             | Kenya Kisumu                                                                 |
| Press an    | ny key to continue 📷                                                         |
|             |                                                                              |
|             |                                                                              |

(d) Modify the displayTokenFrequencyTable function such that when the field selector (a parameter for this function) is 1 (site), the function calls the getSiteData function to display the site name in addition to the site code, frequency and probability. Modify the displaySelectiveAnalysis function such that it calls the revised

displayTokenFrequencyTable function. The expected results when field selector =1 is as shown below. [3 marks ]

| CAUSE OF DEATH ANALYSIS BY : SITE           Jalue         SiteName         #Cases           BD011         ICDDR-B:_Matlab         19629           BD012         ICDDR-B:_Bandarban         538           BD013         ICDDR-B:_Candarban         538           BD014         ICDDR-B:_Chakaria         2333           BD014         ICDDR-B:_Chakaria         5079           BF031         Nouna         112001           BF031         Ouagadougou         1674           CI011         Taabo         1472           ET031         Avlaelo         881           SH011         Navrongo         21524           SH031         Dodowa         6239           SH031         Farafenni         5024 | Percent<br>11.1 ×<br>0.3 ×<br>1.3 ×<br>2.9 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BD011         I CDDR-B_: Matlab         19629           DD012         I CDDR-B_: Bandarban         538           BD013         I CDDR-B_: Chakaria         2333           BD014         I CDDR-B_: Chakaria         2333           BD014         I CDDR-B_: Chakaria         5079           FF031         Nouna         11201           FF041         Ouagadougou         1674           FF041         Ouagadougou         1674           FF031         Avlae lo         881           H011         Navrongo         21524           H031         Dodova         6239                                                                                                                              | 11.1 ×<br>0.3 ×<br>1.3 ×<br>2.9 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D011       Purvorejo       2564         N011       Ballabgarh       4214         N021       Uadu       1258         E011       Kilifi       8160         E021       Kisunu       34693         E031       Nairobi       7193         W011       Bandafassi       3236         N012       Filabavi       1367         A011       Agincourt       19171         A031       Africa_Centre       16035         UMMARY STATISTICS                                                                                                                                                                                                                                                                       | 6.3 2<br>0.9 2<br>0.8 2<br>0.5 2<br>12.2 2<br>3.5 2<br>1.4 2<br>1.8 2<br>1.8 2<br>1.8 2<br>1.8 2<br>1.8 2<br>1.8 2<br>1.8 2<br>1.8 2<br>1.9 2<br>1 |

#### ANNEX A:

#### (This code is provided in the data folder: EXAM2018\_CSC213\_DATA\_ANNEX\_A)

```
#include "StdAfx.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
//need to include list STL
#include <list>
#include <iterator>
//struct for storing token count
struct TokenCount{
         std::string Value;
          int Frequency;
          double Prob
};
// overload less than operator
bool operator<(const TokenCount& lhs , const TokenCount& rhs) {
   return (ihs.Value < rhs.Value) ; // compares token records by Value field
}
//get token frequency table size = number of unique tokens
int getTokenFrequencyTableSize(std::list<TokenCount> TokenFrequencyTable)
{
          return TokenFrequencyTable.size();
}
//display token frequency table
void displayTokenFrequencyTable(std::list<TokenCount> TokenFrequencyTable,
                                                std::ostream& os)
{
          //loop through all Token Count records in the Token Frequency Table
          // and write values to an given output stream
          os<<std::left<<std::setw(10)<<"Value"<<std::setw(15)
                                      <<"#Cases" <<std::setw(5)
                                          <<"Percent" << std::endl;
          for(std::list<TokenCount>::iterator it = TokenFrequencyTable.begin();
                                    it != TokenFrequencyTable.end(); it++)
                    os<<std::setw(10)<< it->Value
                     << std::setw(15)<< it->Frequency
                             std::fixed << std::setw(5) << std::setprecision(1)
                     <<
                     <<
                         it->Prob << "%"<< std::endl;
}
//display summary statistics
void showTokenFrequencySummaryStats(std::list<TokenCount> TokenFrequencyTable,
                                                                   std::ostream& os)
{
os << "\nSUMMARY STATISTICS " << std::endl;
               ----- " << std::endl;
os << "-----
os << "UNIQUE TOKEN COUNT = " << "ADD APPROPRIATE CODE HERE " << std::endl;
                                = " << "ADD APPROPRIATE CODE HERE " << std::endl;
os << "MEAN
os << "STANDARD DEVIATION = " << "ADD APPROPRIATE CODE HERE " << std::endl;
os << "MINIMUM VALUE = " << "ADD APPROPRIATE CODE HERE " << std::endl;
os << "MAXIMUM VALUE = " << "ADD APPROPRIATE CODE HERE " << std::endl;
```

}

```
//display report header
void displayReportHeader (std::ostream& os, int fieldSelector=1)
ł
 os << "CAUSE OF DEATH ANALYSIS BY : ";
 if (fieldSelector ==1)
         os << "SITE " << std::endl;
 else if (fieldSelector ==2)
          os << "YEAR OF DEATH" << std::endl;
 else if (fieldSelector ==3)
          os << "AGE GROUP AT DEATH" << std::endl;
 else if (fieldSelector ==4)
          os << "GENDER OF DECEASED" << std::endl;
  else if (fieldSelector ==5)
          os << "CAUSE OF DEATH" << std::endl;
 }
//perform selective analysis from train_cod_data.txt -FIRST VERSION
void displaySelectiveAnalysis(std::ostream& os, int fieldSelector=1)
{
        displayReportHeader(os, fieldSelector);
        std::list<TokenCount> FT = extractTokensFromCODFile ("train_cod_data.txt",
                                                               fieldSelector);
        evaluateTokenProbability(FT);
        displayTokenFrequencyTable(FT, os);
        showTokenFrequencySummaryStats(FT, os);
}
//perform selective analysis from any cause of death file -SECOND VERSION
void displaySelectiveAnalysis(char* codFilename, std::ostream& os, int fieldSelector=1)
{
        displayReportHeader(os, fieldSelector);
        std::list<TokenCount> FT = extractTokensFromCODFile (codFilename, fieldSelector);
        evaluateTokenProbability(FT);
        displayTokenFrequencyTable(FT, os);
        showTokenFrequencySummaryStats(FT, os);
}
//get token frequency Table size
int getTokenFrequencyTableSize(std::list<TokenCount> TokenFrequencyTable)
{
         return TokenFrequencyTable.size();
}
//function to generate sample frequency table for testing
std::list<TokenCount> getSampleTokenFrequencyTable ()
{
         //declare list of token count
         std::list<TokenCount> TokenFrequencyTable;
         //declare token count record
         TokenCount TC;
         for (int year = 1992; year < 2012; year++)
         {
                 //******
                 //convert year int to string
                 std::ostringstream stream;
                 stream << year;
                 std::string year_str = stream.str();
                 //******
                 TC.Value = year_str;
                 TC.Frequency = (rand() % 99) + 1;//randomly generated values
                 TC.Prob =0;
                 TokenFrequencyTable.push_back(TC);
         TokenFrequencyTable.sort();
         return TokenFrequencyTable;
```