### UNIVERSITY OF SWAZILAND

#### **FACULTY OF SCIENCE**

#### DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION 2005

TITLE OF PAPER: INTRODUCTION TO ANALOG & DIGITAL ELECTRONICS

COURSE NUMBER: E212

TIME ALLOWED: THREE HOURS

INSTRUCTIONS: ANSWER ANY FOUR QUESTIONS OUT OF FIVE QUESTIONS.

**EACH QUESTION CARRIES 25 MARKS** 

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT HAND MARGIN

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

For each of the following op-amp circuits, determine the output  $V_{\text{out}}$ .

(a)



[8 marks]



[8 marks]



[9 marks]

(a) Using the output characteristics of a common base bipolar junction transistor (BJT) amplifier, indicate the three modes of operation of the BJT. State the conditions of the emitter-base and collector-base junctions in each mode.

[11 marks]

- (b) Calculate  $\beta$  for a transistor for which  $\alpha = 0.995$ . For a collector current of 15 mA, find the base current of the transistor. [4 marks]
- (c) For the circuit shown below,  $V_{BE}$  = 0.7,  $\beta$  = 100. Determine  $I_B$ ,  $I_C$  and  $V_{CE}$ . [10 marks]



(a) What are the differences between JFET, MOSFET and CMOS?

[ 14 marks ]

(b) Using the output  $(I_D-V_{DS})$  characteristics of a MOSFET, indicate the three regions of operation of a FET. Give the conditions for the FET to be in each of the three regions of operation in terms of  $V_{GS}$ ,  $V_t$ , and  $V_{DS}$ .

[5 marks]

(c) You are given a MOSFET with  $V_t = 2 \text{ V}$ . Determine the region of operation in which it will be for the following  $V_{GS}$  and  $V_{DS}$  voltage values:

(i) 
$$V_{GS} = 1.8 \text{ V}, V_{DS} = 5 \text{ V}$$

[2 marks]

(ii) 
$$V_{GS} = 3.5 \text{ V}, V_{DS} = 4.5 \text{ V}$$

[2 marks]

(iii) 
$$V_{GS} = 4.5 \text{ V}, V_{DS} = 2 \text{ V}$$

[2 marks]

- (a) Given the logic function X = ABC + BC + A
  - (i) Simplify the function using de Morgan's theorem.

[5 marks]

(ii) Implement the simplified function using basic logic gates.

[3 marks]

- (b) With reference to the following logical circuit:
  - (i) Obtain the Boolean expression for the output F.

[3 marks]

(ii) Work out the truth table.

[3 marks]

(iii) Which logic function or gate has the derived truth table?

[2 marks]



(c) Design a circuit to produce an output corresponding to the following truth table. Do any obvious simplifying:

[9 marks]

| X | Y | Z | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
|   |   |   |   |

# 6

#### Question 5

a) Explain what you understand by rectification efficiency.

[3 marks]

b) What are the advantages of using capacitor-input filters in rectifiers?

[3 marks]

c) Sketch the volt-ampere characteristic of a zener diode.

[3 marks]

- d) For the circuit shown below, the input voltage  $V_s=2\sin{(100\pi t)}$ , the cut-in voltage of the diode  $V_{\gamma}=0.5$  volts, and  $R=100~\Omega$ 
  - i) find the expression for the voltage across R,

[3 marks]

ii) find the ignition angle and extinction angle,

[ 10 marks]

iii) sketch the current through the resistor R for two cycles

[ 3 marks]

