UNIVERSITY OF SWAZILAND MAIN EXAMINATION 2004/5

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

TITLE OF PAPER: SIGNALS I

COURSE NUMBER: E342

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer any FOUR (4) of the following five questions.
- 2. Each question carries 25 marks.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SIX (6) PAGES INCLUDING THIS PAGE

Fig. 1

In Fig 1 $V_i = 2\sin(\pi t)$

Sketch 2 periods of the following:

(a)	(i)	Input voltage V_i	[4 marks]
	(ii)	Voltage across diode, (Va)	[4 marks]
	(iii)	Voltage across resistance R, V _R	[4 marks]
	(iv)	Classify the type of circuit in Fig. 1.	[3 marks]
(b)	(i)	Determine the average value of V_R	[5 marks]
	(ii)	Determine the RMS value for V _P	[5 marks]

Consider the circuit in Fig. 2.

- (a) Determine its transfer function $\frac{v_o}{v_i} = G(j\omega)$ [5 marks]
- (b) Determine and sketch the phase and amplitude characteristics of the circuit of Fig. 2. [10 marks]
- (c) What type of filter does the figure represent? Elaborate on your response.

 [5 marks]
- (d) Of what significance is the resistor and capacitor in the circuit? And what are they usually known as? [5 marks]

Given that

$$G(j\omega) = \frac{1}{1 + j\omega RC}$$
 (Eq. 1)

and RC = 0.3 sec

- (a) Compute the magnitude and phase of $G(j\omega)$ at $\omega = 1$. [6 marks]
- (b) The square wave shown in Fig. 3 is applied to the system whose transfer function is given in Eq. 1. The square wave has a period 2π and amplitude unity.

Fig. 3: Square wave with fundamental angular frequency 1 and amplitude 1.

- (i) State whether the square wave is odd or even and how this will assist in determining the Fourier coefficients. [3 marks]
- (ii) Sketch the output waveform after passing through the system described by Eq.1. [3 marks]
- (iii) Obtain an expression for the Fourier Coefficients of the square wave. [6 marks]
- (iv) Compute the first three Fourier coefficients. [3 marks]
- (v) Evaluate the gain and phase changes to these first three Fourier components as they pass through the system in Eq.1. [4 marks]

- (a) Determine whether the following signal processing operations are linear or non-linear.
 - (i) $y(t) = 2x(t) + d\frac{x(t)}{dt}$ [2 marks]
 - (ii) $y(t) = 3 + \int 5x(t)dt$ [2 marks]
 - (iii) $y(t) = 4x^2(t)$ [2 marks]
- (b) Sketch the graphs of the following signals and determine the magnitude and period of each signal.
 - (i) $x(t) = 2\cos 2\pi t + 3\cos 4\pi t$ [3 marks]
 - (ii) $x(t) = |\sin 5\pi t|$ [3 marks]
- (c) (i) Describe energy and power signals and give an example of each. [6 marks]
 - (ii) Find the average power developed across a 1 Ω resistor by the voltage signal:

$$v(t) = 2 + \cos t - \frac{2}{3}\sin 2t + \frac{1}{2}\cos 3t$$

(Hint: use Parseval's theorem)

[7 marks]

Fig. 4

A periodic square wave shown in Fig. 4 above is defined as:

$$x(t) = \begin{vmatrix} 1, & |t| < T_1 \\ 0, & T_1 < |t| < \frac{T_o}{2} \end{vmatrix}$$

Determine the exponential Fourier series expansion of the wave.

[25 marks]