UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION 2005

TITLE OF PAPER : MATHEMATICAL METHODS II (PAPER

ONE)

COURSE NUMBER : E470(I)

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

E470(I) MATHEMATICAL METHODS II (PAPER ONE)

Question one

- (a) Given the following complex function $w = z e^{-z^2} 6z^3 + 5$ where z = x + iy and w = u(x, y) + i v(x, y),
 - (i) find its u(x,y) and v(x,y), (4 marks)
 - (ii) check for its analyticity, (4 marks)
 - (iii) plot the mapped image of u(x,y) = 0, u(x,y) = 2, u(x,y) = 4 and u(x,y) = 6 curves onto the z-plane and show them in one display in z-plane for x=-2 to +2 and y=-2 to +2.
 - (iv) use conformal command to plot the mapped region in w-plane corresponding to a narrow strip rectangular region in z-plane with vertices of z=0, z=5, z=0.001i and z=5+0.001i.
- (b) (i) Determine the value of a such that $u(x,y) = x^4 + a x^2 y^2 + y^4 5 x$ is a harmonic, (4 marks)
 - (ii) and then find its conjugate harmonic v(x, y). (4 marks)

Question two

- (a) Evaluate the value of the following complex line integral $\int_C (z^2 e^z 4z) dz$ if
 - (i) C: the shortest path from z = 3 to z = 3i, (5 marks)
 - (ii) C: the counter clockwise circular path from z=3 to z=3i with the centre of the circle at the origin .

Compare the answer here with that obtained in (a)(i) and make brief comment. (7 marks)

(b) Given the following complex function f(z) as:

$$f(z) = \frac{2}{z+3-4i} - \frac{5}{z+3+4i}$$

- (i) find its convergent series expansion about z = -3 i for all the values of z in the domain of |z + 3 + i| < 3. (3 marks)
- (ii) find its convergent series expansion about z = -3 i for all the values of z in the domain of 3 < |z + 3 + i| < 5, (6 marks)
- (iii) find its convergent series expansion about z = -3 i for all the values of z in the domain of |z + 3 + i| > 5. (4 marks)

Question three

(a) Find the centre and the radius of convergence of the following power series:

$$\sum_{n=0}^{\infty} \frac{\left(-2\right)^{n+2} \left(n!\right)^2}{\left(2 n\right)!} \left(z + 5 - 3i\right)^n$$
 (5 marks)

(b) Evaluate the value of the following contour integral

$$\oint_C \frac{e^{-2z}}{(z^2+9)(z^2-4z+5)} \, dz \qquad \text{where}$$

C: the boundary of the circle |z+2-3i|=3, and looping in counterclockwise sense. (7 marks)

(c) Given the following definite integral:

$$\int_0^{2\pi} \frac{\sin(\theta) - \cos(2\theta)}{25 - 24\cos(\theta)} d\theta$$

- (i) use int command to find its value, (3 marks)
- (ii) convert it to a complex contour integral, evaluate the value of this contour integral. Compare it with that obtained in (i). (10 marks)

Question four

(a) Given the following two improper integrals:

 $\int_{-\infty}^{\infty} \frac{\sin(k \, x)}{x^2 + x + 1} \, dx \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{\cos(k \, x)}{x^2 + x + 1} \, dx \quad \text{where} \quad k \quad \text{is a positive constant}$

- (i) convert them into the real and imaginary part of a complex contour integral respectively. Justify your choice of the contour. (3 marks)
- (ii) Integrate the converted contour integral in (a)(i) by the method of residue integration. Evaluate the values of the given integrals if k = 5.

(10 marks)

(b) Find the Cauchy principal value of the following integral:

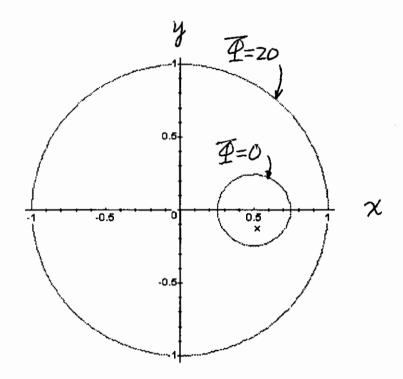
$$\int_{-\infty}^{\infty} \frac{x+3}{x^3-x^2-x-15} \, dx \tag{7 marks}$$

(c) Evaluate by the method of residue integration the following improper integral:

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 2x + 5)^2} dx$$
 (5 marks)

Ouestion five

A pair of long, non-coaxial, circular cross-section conductors is statically charged such that the inner conductor (radius of $\frac{1}{4}$ and centred at $\left(x=\frac{1}{2},y=0\right)$) is at zero potential, i.e., $\Phi=0$ volt, while the outer conductor (radius of 1 and centred at origin) is maintained at $\Phi=20$ volts as shown in the diagram below:



Use the linear fractional transformation of the form $w = \frac{z-b}{b\,z-1}$ to transform the above given non-coaxial circles in z-plane $\left(z=x+i\,y\right)$ to two coaxial circles in w-plane $\left(w=u+i\,v\right)$,

(a) show that $w = \frac{z-b}{bz-1}$ maps the unit circle in z-plane, i.e., $z=e^{i\theta}$, onto the unit circle in w-plane for any real value of b, (5 marks)

Question five (continued)

- (b) find the appropriate value of b such that the inner circle of radius $\frac{1}{4}$ maps to a coaxial circle of radius r_0 (< 1). Find also the value of r_0 . (8 marks)
- (c) since the general solution for coaxial conductors can be written as $\Phi = k_1 \ln(|w|) + k_2 \text{ , determine the values of } k_1 \text{ and } k_2 \text{ from the given}$ boundary conditions . (4 marks)
- (d) plot the equal potential surfaces $\Phi=0$, $\Phi=10$ and $\Phi=20$ in z-plane and show them in a single display . (8 marks)