UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING SUPPLEMENTARY EXAMINATION 2004/2005

TITLE OF PAPER: DIGITAL COMMUNICATIONS

COURSE NUMBER: E530

TIME ALLOWED: THREE HOURS

INSTRUCTIONS: READ EACH QUESTION CAREFULLY

ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES **25 MARKS**. MARKS FOR EACH SECTION ARE SHOWN

IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS 5 PAGES INCLUDING THIS PAGE.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

OUESTION 1

- (a) Determine the power spectral density (PSD) for the following types of signaling formats as a function of Tb, the time needed to send 1 bit of data. Consider a random data pattern consisting of binary 1s and 0s, where the probability of obtaining either a binary 1 or a binary 0 is $\frac{1}{2}$.
 - (i) NRZ bipolar format.

[7 marks]

(ii) RZ polar format.

[7 marks]

What is the first-null bandwidth of these signals? What is the spectral efficiency for each of these signaling cases?

- (b) (i) A multilevel digital communication system is to operate at a data rate of 9600 bits/s. If 4- bit words are encoded into each level for transmission over the channel, what is the minimum required bandwidth for the channel? [4 marks]
 - (ii) Construct the return-to-zero (RZ) unipolar and bipolar formats for the binary sequence (0001010101) based on a rectangular pulse. [2 marks]
 - (iii) Give one advantage offered by the unipolar format over the bipolar one and [1 mark]
 - (iv) two advantages offered by the use of the bipolar format over the unipolar one. [2 marks]
 - (v) What will the duobinary coder output of the binary sequence in (ii) be?

 [2 marks]

QUESTION 2

- (a) Given the input sequence $x_k = 0\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 0$, determine the transmitted data stream when
 - (i) precoded duobinary signaling is used. Also verify that the receiver decoding rule yields the input sequence x_k . [7 marks]
 - (ii) modified duobinary signaling is used.

[4 marks]

(b) Derive an expression of the net probability of error (Pe) for matched filter reception of a given NRZ bipolar binary format. Let the general decision thresholds be set at $\pm \frac{A}{2}$, where A is the peak amplitude of the pulse representing a symbol. Assume the channel noise is a zero - mean Gaussian process. Express Pe in terms of the average energy per bit, Eb.

[14 marks]

QUESTION 3

A source produces one of three possible independent symbols a, b, or c with probabilities 0.7, 0.2 and 0.1 respectively during successive signaling intervals.

(i) How much information does one gain by being told that w_i was emitted, $w_i = a, b, c$.

[6 marks]

(ii) What is the average information of the source output?

[3 marks]

(iii) The source emits 1000 symbols per second. Compute

(a) the average information rate and

[3 marks]

(b) the maximum possible information rate.

[3 marks]

(iv) Design an efficient code which can be used for the discrete source in question.

Consider any two binary source coding methods.

[10 marks]

QUESTION 4

(a) Briefly explain the following:

(i)	a binary symmetric channel	[1 mark]
(ii)	channel capacity	[1 mark]
(iii)	channel coding	[1 mark]
(iv)	redundancy	[1 mark]
(v)	automatic repeat request	[1 mark]

- (b) A discrete memoryless source with alphabet {so, s1, s2, s3} has statistics {0.7, 0.15, 0.10, 0.05} for its output.
 - (i) Compute the Huffman codewords, the average code-word length, the entropy of the source and efficiency of the code. **Hint:** move the combined symbol as high as possible. [10 marks]
 - (ii) If the source is extended to order two, compute the average code-word length and the efficiency of the code. [8 marks]
 - (iii) Comment on the performance of (i) as compared to (ii). [2 marks]

QUESTION 5

(a) A communicator needs to transmit a single message, 3 bits long. The message is convolutionally encoded using the code defined by the rate ½ convolutional encoder shown in Figure 5.0.

Figure 5.0

Two zeros are appended to the message to clear the encoder of message bits.

- (i) If the code symbols are transmitted over a BSC with crossover probability p = 0.2 and the received sequence is (11, 01, 10, 10, 00), what is the corresponding decoder output? [7 marks]
 - (ii) Compute the decoder output using the maximum-likelihood decoding rule and compare the results with (i). [5 marks]
 - (b) Given the following generator matrix,
 - (i) determine all code vectors of a (6,3) block code.

$$G = \begin{bmatrix} 100011 \\ 010101 \\ 001110 \end{bmatrix}$$

[7 marks]

(ii) If the received noise corrupted vector, R = [101111], find the actual transmitted vector, M. [6 marks]

USEFUL INFORMATION

The Q - function is defined as

$$Q(\mathbf{v}) = \frac{1}{\sqrt{2\pi}} \int_{v}^{\infty} e^{\frac{x^2}{2}} dx$$

The Gaussian probability density function,
$$P(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(y-m)^2/2\sigma^2}$$