UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

EXAMINATION 2006 (SUPPLEMENTARY)

TITLE OF PAPER: ELECTRONICS I Paper I

COURSE NUMBER: E360

TIME ALLOWED: THREE HOURS

INSTRUCTIONS: Attempt all questions

Each question carry 25 marks

Marks for different sections are shown in the right-hand margin

THIS PAPER HAS 5 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

The transistor Q1 in figure 1 has the parameters $g_m\,r_\pi$ and r_o . For the circuit shown

- a) draw the equivalent circuit diagram at mid-band frequencies (5 marks)
- b) determine expression for the input impedance Ri (2marks)
- c) determine the expression for the output impedance Ro (2 marks)
- d) determine the expression voltage gain $A = \frac{V_o}{V_s}$ (10 marks)
- e) determine the expression current gain $A = \frac{I_o}{I_s}$ (6 marks)

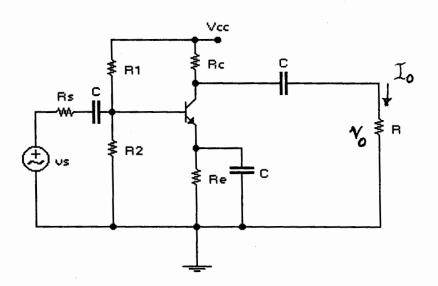


Figure 1

Ouestion 2

- a) Draw a high-frequency hybrid- π model for a BJT. Label all parameters in your drawing. (5marks)
- b) Use Miller's theorem to obtain a simplified equivalent circuit of the model in part (a) of this question. Then draw the simplified circuit and label it accordingly. (7 marks)
- c) For the cicuit shown in figure 2
 - i) obtain the gain at mid-band frequencies
 - ii) obtain the lower 3dB cut-off frequency in Hz

(13 marks)

Note:
$$g_m = \frac{I_{CQ}}{V_T}$$
 and $\beta = g_m r_\pi = 200$, $V_{BEQ} = 0.67 V$

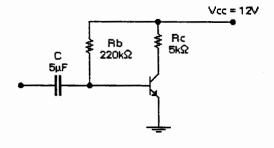
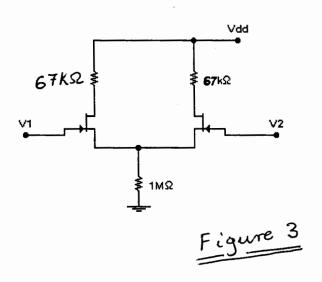


Figure 2

Question 3


For the circuit shown in figure 3, $V_i = V1-V2$, $g_m = 3mA/V$ and $r_{ds} = 20k\Omega$ obtain the following:

a) differential mode gain $A_{DM} = \frac{V_o}{V_o}$

b) common mode gain $A_{CM} = \frac{V_o}{V_i}$

[9 marks]
[14 marks
[2 marks

c) common mode rejection ratio.

Question 4

- a) For the peak detector power supply circuit shown in figure 4, determine the value of capacitor C and number of turns n for the transformer, so that the dc voltage across the resistor RL is less than 50V with less than 10 % peak to peak ripple when the input voltage Vi = 141sin(377t) volts.
- b) Draw two circuit used for more efficient filtering in rectifier circuits.

[17 marks

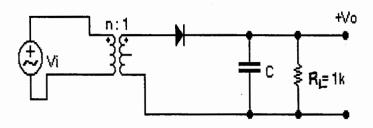


Figure 4