UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2006

TITLE OF PAPER: ELECTRONICS I

(Paper I)

COURSE NUMBER: E360

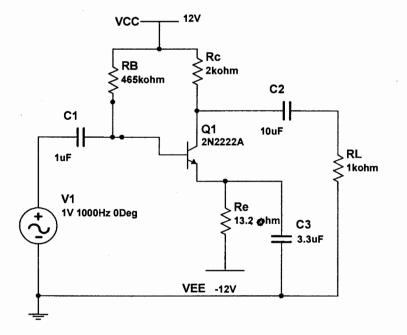
TIME ALLOWED: THREE HOURS

INSTRUCTIONS: ANSWER QUESTION 1 AND ANY OTHER THREE QUESTIONS

QUESTION 1 CARRIES 40 MARKS

QUESTION 2, 3, 4, AND 5 CARRY 20 MARKS EACH.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN


THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

- a) For the circuit shown in Figure 1.A,
 - (i) If β = 120, V_{BEQ} = 0.67V, V_{CC} = V_{EE} =12V determine the following I_{BQ} , I_{CQ} , V_{CEQ} .
 - (ii) Draw the small signal equivalent circuit suitable for use at all possible frequencies.
 - (iii)Draw the small signal equivalent circuit at mid-band frequencies. [19 marks]
- b) In the circuit shown in Figure 1. B, Q_1 and Q_2 are identical transistors having $r_{ds} = 20 K\Omega$ and $g_m = 0.2$ siemens.
 - (i) Which amplifier type does this circuit approximate?
 - (ii) determine the input and output impedance and the transfer ratio

[12 marks]

c) For the oscillator circuit shown in Figure 1.C derive the expression for the return ratio T in terms of A_v. [9 marks]

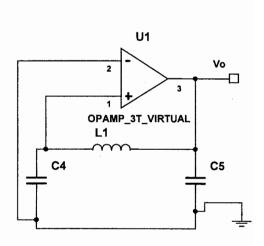


Figure 1. A

Figure 1 . C

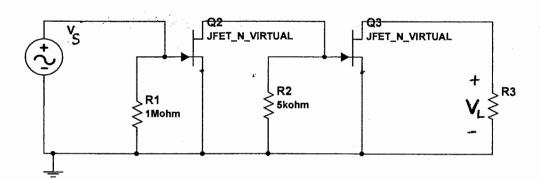


Figure 1. B

All diodes in Figure 2 are identical with V_{γ} = 0.5 V and the transistor Q1 has a β = 100 and V_{BEQ} = 0.63V when forward biassed..

a) Find V_o for possible combinations of the inputs. [10 marks]
b) Draw a truth table [3 marks]

c) What type of gate is this and write the equation for V_o . [2 marks]

d)In designing ICs it is possible for the design to consist of exclusively MOSFETs and no other components. This is not possible with BJTs Why? [5 marks]

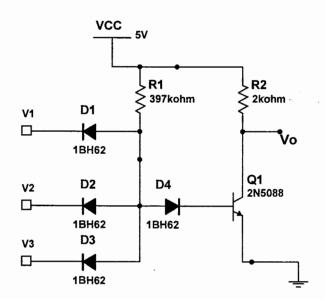


Figure 2

Design a single stage common emitter amplifier with self bias and a single 12 volts dc supply, biassing the base through a resistor $R_{\rm B}$. The amplifier's voltage gain at mid band frequencies should be -126.4, when connected to a source with internal impedance of a load resistor. The input impedance seen by the source should be equal to $4.5 {\rm K}\Omega$ and the output impedance seen by the load should be equal to $1.145 {\rm K}\Omega$. The impedance of the source is $100 {\Omega}$. A BC 107 transistor biassed at $V_{\rm CEQ}$ = 5volts and $I_{\rm CQ}$ = 5.128 mA with β = 120 should be used. The other parameters for this transistor are $g_{\rm m}$ = 0.2051 siemens, r_{π} = 5 K Ω and $r_{\rm o}$ = 25K Ω . [Hint: find values of $R_{\rm B}$, $R_{\rm C}$, $R_{\rm L}$, and $R_{\rm E}$] [20 marks]

a) Derive the expression for the output voltage V_o in terms of voltages (x, y, z) and the resistors as shown in Figure 4. [8 marks] b) Explain how the circuit in Figure 4 works? [6 marks] c) What would be the theoretical range for the input voltages (x, y, z) and the output, and what would limit the values of the input voltages? [6 marks]

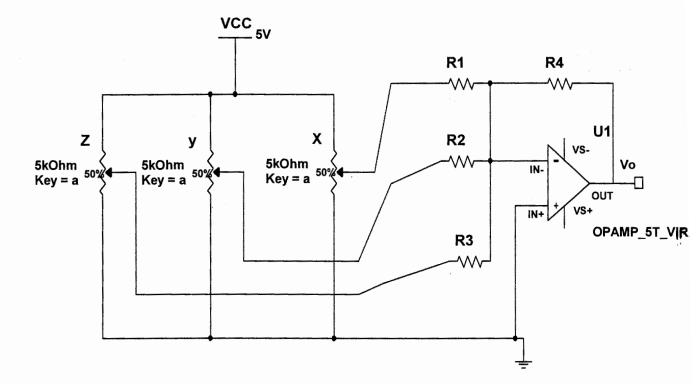


Figure 4 |Vs|=12volts

For the power amplifier shown in figure 5 calculate

- (a) the power dissipated by the circuit when v_i is zero.
- (b) the maximum and minimum collector current
- (c) the power available at the output Vo

[5 marks]

[11 marks]

[4 marks]

Note: $\beta = 16$, $V_{BE} = 0.7$ and $V_1 = 2sin(\omega t)$

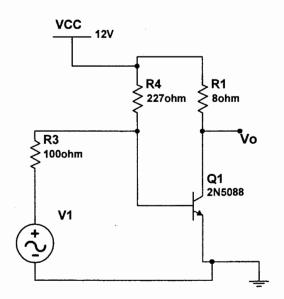


Figure 5