UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION 2006

:

TITLE OF PAPER

MATHEMATICAL METHODS I (PAPER

ONE)

COURSE NUMBER

E370(I)

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS <u>SEVEN</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

E370(I) MATHEMATICAL METHODS I (PAPER ONE)

Question one

(a) Given the following function f(t) as

- (i) express f(t) in terms of Heaviside functions and then plot it for t=0 to 40 to reproduce the given graph, (5 marks)
- (ii) find the Laplace transform of f(t) by integration, (4 marks)
- (iii) apply the first shifting theorem to find the Laplace transform of $e^{7t}f(t) \quad . \tag{2 marks} \)$

Question one (continued)

Find the inverse Laplace transforms of both $F(s) = \frac{2+8s}{(s+3)(s+1)(s-2)}$ **(b) (i)**

and
$$G(s) = \frac{s^2 - 5s - 8}{s^4 - 6s^2}$$
, (4 marks)

(2 marks)

(8 marks)

- apply the second shifting theorem to find the inverse Laplace transform of (ii) $e^{-9s}F(s)$,
- apply the convolution theorem to find the inverse Laplace transform of (iii) F(s)G(s) and plot it for t=0 to 10.

3

Question two

Given the following differential equation y'' - 5y' + 8y = r(t) where

r(t) = 5(u(t-5)-u(t-10)) and its initial conditions y(0) = 6 and y'(0) = 0

- (a) find the Laplace transform of r(t), namely R(s), (2 marks)
- (b) express the Laplace transform of y(t), namely Y(s), as Y(s) = F(s)R(s) + G(s) , find the expressions of F(s) and G(s) , (6 marks)
- (c) find the inverse Laplace transforms of F(s) and G(s), namely f(t) and g(t).
- (d) find the convolution of f(t)*r(t) in $0 \le t < 5$, $5 \le t < 10 \text{ and } 10 < t \text{ explicitly,}$ (10 marks)
- (e) plot y(t), which is f(t) * r(t) + g(t), for t = 0 to 20. (5 marks)

Question three

(a) Given the following systems of linear equations:

$$\begin{cases}
4x - 8y + 3z = 16 \\
-x + 4y - 5z = -21 \\
3x - 6y + z = 7
\end{cases}$$

- (i) use linsolve command to find the solutions, (3 marks)
- (ii) find the solutions by using the method of Gauss elimination, (use addrow command successively and then use backsub command to get the solutions) (6 marks)
- (ii) find the solutions by using the Cramer's rule. (6 marks)
- (b) Given the following matrix $B = \begin{pmatrix} 4 & 1 & 0 \\ 5 & -3 & 1 \\ -9 & 4 & -1 \end{pmatrix}$,
 - (i) find its inverse B^{-1} by the Gauss-Jordan elimination method (use addrow command in succession and also use mulrow command).

(8 marks)

(ii) use *inverse* command to find B^{-1} and compare it with that obtained in (b)(i). (2 marks)

Question four

(a) Given the following system of differential equations:

$$\begin{cases} \frac{d x_1(t)}{dt} = -4 x_1(t) + 2 x_2(t) \\ \frac{d x_2(t)}{dt} = x_1(t) - 3 x_2(t) \end{cases}$$

- (i) set $x_1(t) = X_1 e^{\lambda t}$ and $x_2(t) = X_2 e^{\lambda t}$, substituting them into the above equations and deduce the following matrix equation $Ay = \lambda Iy$ where $A = \begin{pmatrix} -4 & 2 \\ 1 & -3 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $y = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ (4 marks)
- (ii) find the eigenvalues of λ by using $\det(A \lambda I) = 0$, (4 marks)
- (iii) use eigenvects commend to find the eigenvalues and eigenvectors of A. Compare the eigenvalues found here to those obtained in (ii) and make brief comments. (3 marks)
- (iv) write down the general solution of the x_1 and x_2 in terms of their eigenvalues and eigenvectors. Determine the values of the arbitrary constants in the general solutions if $x_1(0) = 7$ and $x_2(0) = 5$.

(6 marks)

- (b) For a normal distribution f(x) with the mean value of 25 and the standard deviation of 15,
 - (i) plot f(x) for x = 0 to 40, (3 marks)
 - (ii) find its corresponding cumulative distribution function g(x) and use it to calculate the values of the probabilities of P(x > 7) and P(9 < x < 19) (5 marks)

Question five

- Given the following differential equation $4x\frac{d^2y(x)}{dx^2} + 2\frac{dy(x)}{dx} + y(x) = 0$, using the power series method, i.e., set $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ with $a_0 \neq 0$ and substituting it back to the given differential equation,
 - (i) requiring the coefficients of the lowest power terms for x, i.e., x^{s-1} , to be zero and thus write down the indicial equations. From the equation find the values of s (possibly also the value of a_1), (6 marks)
 - (ii) requiring the coefficients of all the rest power terms for x, i.e., x^{s+n} with $n=0,1,2,3,\cdots$, to be zero and find the recurrence relation, (4 marks)
 - (iii) using the recurrence relation in (a)(ii), find the values of a_1 , a_2 & a_3 if $a_0 = 1$ for each value of s found in (a)(i). (8 marks)
- (b) If the right hand side of the differential equation in (a) is $5x^2 3$ instead of zero, then set a particular solution for it as $y_p(x) = k_1 x^2 + k_2 x + k_3$ and find the values of k_1 , k_2 and k_3 . Write down the general solution for (b).