UNIVERSITY OF SWAZILAND **FACULTY OF SCIENCE**

DEPARTMENT OF ELECTRONIC ENGINEERING MAIN EXAMINATION, DECEMBER 2006

TITLE OF PAPER :

ANALOGUE ELECTRONICS

COURSE NUMBER: E361

TIME ALLOWED :

THREE HOURS

INSTRUCTIONS :

READ EACH QUESTION CAREFULLY

ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES 25 MARKS. MARKS FOR EACH SECTION ARE SHOWN

ON THE RIGHT-HAND MARGIN.

THIS PAPER HAS 8 PAGES INCLUDING THIS PAGE.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

- (a) (i) Design a diode circuit to supply 1.5 V to a load resistor. The diode is connected to a 5 V supply through a resistor R, has a specification of a 0.7 V drop at a current of 10 mA and $\eta = 1$. (3 marks)
 - (ii) Using the constant Voltage drop model, specify the value of R. (5 marks)
 - (iii) What is the output voltage when the load is disconnected? (2 marks)
 - (iv) For fixed bias voltage, how will doubling the load affect the voltages across each component in the circuit? (3 marks)
- (b) The circuit in Figure 1 shows a MOSFET Q1 having output characteristics displayed on Figure 2 and a load MOSFET Q2 with characteristics displayed on Figure 3.

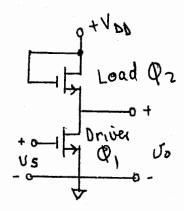
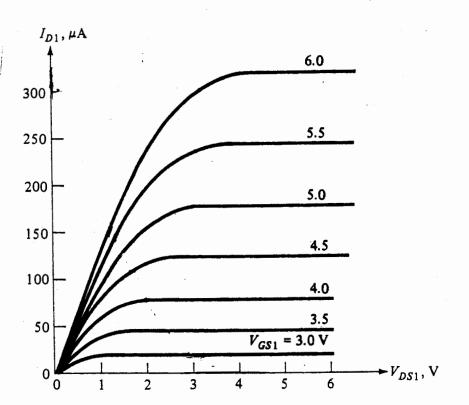
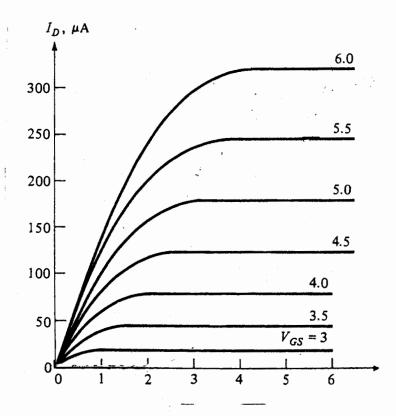



Figure I

- (i) Plot the resistance characteristics of the load MOSFET Q2 onto Figure 3.
 (8 marks)
- (ii) Plot the voltage transfer characteristic $v_o = V_{DSI}$ versus $v_g = V_{GSI}$ for the circuit of Figure 1. (4 marks)


NOTE: IF YOU HAVE ANSWERED THIS QUESTION, REMEMBER TO HAND IN FIGURE 2 AND FIGURE 3 WITH YOUR ANSWER BOOKLET(S). MAKE SURE YOUR EXAM. NO. IS CLEARLY WRITTEN AT THE TOP OF THIS PAGE

Examination No:

3 morks

Figure 2

3 mark

Figure 3

- (a) An Operational Amplifier is used in a circuit such that the output is a linear combination of the input signals.
 - (i) Present the circuit diagram to sum four input signals and derive the corresponding expression of the output signal. (6 marks)

Let the design in (i) be such that $R_1 = R_f = 1 \text{ k}\Omega$ and $R_2 = 2R_1$ i.e. $R_n = 2R_{n-1}$. The input voltages v_1 , ... v_n can be 0 or 10 V. Note that n = 4.

- (ii) What is the smallest output voltage if at least I input is nonzero? (I mark)
- (b) The dc model of the silicon diode in Figure 4 at 20 °C has $V_{\gamma}=0.6~V$ and $R_f=0.$

The input signal $v_s = 5 + 0.029 \sin \omega t$ V. Neglecting the effect of the diffusion capacitance,

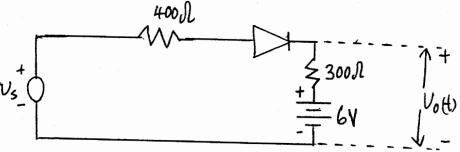
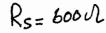



Figure 4

- (i) present the large and small signal models of the circuit. (4 marks)
- (ii) Determine the instantaneous output voltage. (II marks)
- (iii) Sketch 2 cycles of the output voltage that would appear on an oscilloscope when the selector knob is set to ac. (3 marks)

In the design of Figure 5, resistor R_B has been selected to bias the BJT in the forward - active region at a base current $I_B = 40 \,\mu\text{A}$. The output characteristics are given in Figure 6.

The voltage amplitude of v_s is chosen to provide peak base current $I_{bm}=15~\mu A$.

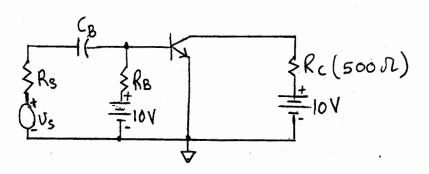


Figure 5

- (i) Using the concept of the load line with Figure 6, compute quiescent values of both the collector current and voltage. (7marks)
- (ii) Present the low frequency small signal equivalent of the circuit in Figure 5. The effect of r_o can be considered negligible and r_b taken as 100 Ω .

Assuming operation at room temperature, determine the signal voltage gain.
(18 marks)

NOTE: IF YOU HAVE ANSWERED THIS QUESTION, REMEMBER TO HAND IN FIGURE 6 WITH YOUR ANSWER BOOKLET(S). MAKE SURE YOUR EXAM. NO. IS CLEARLY WRITTEN AT THE TOP OF THIS PAGE

Examination No:

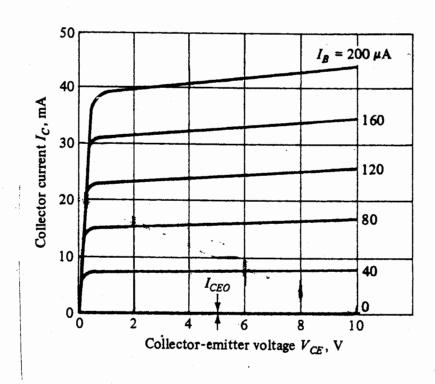


Figure 6

(a) Figure 7 shows an Operational Amplifier design circuit with $R_{_{\rm I}}$ = 100 k Ω and $C_{_{\rm f}}$ = 0.1 μ F.

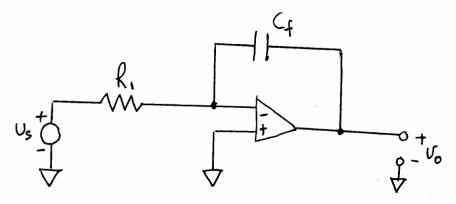
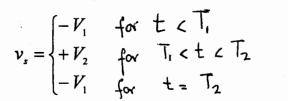



Figure 7

- (i) Derive an expression relating v_o and v_s. (4 marks)
- (ii) Compute and sketch v_o as a function of time for $v_s = -10$ mV. Assume switching at time t = 0. (5 marks)
- (iii) Compute and sketch v_o as a function of time for a 5 V I kHz sinusoidal input signal. (6 marks)
- (b) The waveform

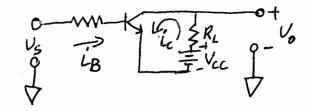


Figure 8

is used as input to the circuit of Figure 8. The value of voltage V₂ ensures operation at the edge of saturation. Neglecting the reverse - current components, sketch the output voltage and current waveforms. (10 marks)

(a) The JFET in Figure 9 is biased at $I_D=6$ mA and $V_{DS}=10$ V, $V_p=-6$ V, $I_{DSS}=15$ mA and $\lambda=0.02$ V⁻¹ .

$$r_{ds} = 1 + \lambda V_{DSQ} \frac{1 + \lambda V_{DSQ}}{\lambda I_{DS}}$$

$$g_{m} = \frac{-2I_{DSS}}{V_{p}} \left(1 - \frac{V_{GSQ}}{V_{p}}\right)$$

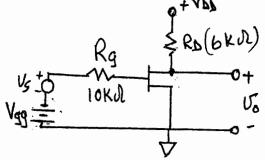


Figure 9

Compute the required value of R_D for the amplitude of the signal component of v_o to be 10 times that of v_s . (13 marks)

(b) Given the following for Figure 10:

(b) Given the followin
$$\beta_F = 125$$

$$\beta_o = 125$$

$$R_1 = 72k\Omega$$

$$R_2 = 18k\Omega$$

$$R_E = 1.4k\Omega$$

$$R_C = 4.0k\Omega$$

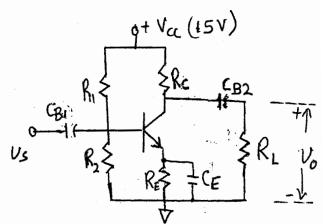


Figure 10

Determine the operating point.

(9 marks)

(3 marks)

(c) What are the main functions of C_{BI} , C_{B2} and C_{E} ?