UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION

December

2006

TITLE OF PAPER : CONTROL SYSTEMS I

COURSE NUMBER: E430

TIME ALLOWED : THREE HOURS

INSTRUCTIONS : ANSWER QUESTION 1 AND ANY OTHER THREE QUESTIONS

QUESTION 1 CARRIES 40 MARKS

QUESTION 2, 3, 4, AND 5 CARRY 20 MARKS EACH.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN

THIS PAPER HAS 7 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE **INVIGILATOR**

Partial Table of z- and s-Transforms

	f(t)	F(s) $F(z)$	f(kt)
	u(t)	$\frac{1}{s}$ $\frac{z}{z-1}$	u(kT)
•	· t	$\frac{1}{s^2} \qquad \frac{Tz}{(z-1)^2}$	kT
3.	t^n	$\lim_{a \to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n$
4.	e^{-at}	$\frac{1}{s+a} \qquad \frac{z}{z-e^{-aT}}$	e^{-akT}
5.	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}} \qquad (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z-e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin ωt	$\frac{\omega}{s^2 + \omega^2} \qquad \frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}.$	sin ω kT
7.	cosωt	$\frac{s}{s^2 + \omega^2} \qquad \frac{z(z - \cos \omega T)}{z^2 - 2z \cos \omega T + 1}$	$\cos \omega kT$
8.	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2} = \frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-ikT}\sin\omega kT$
9.	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2} \qquad \frac{z^2-ze^{-aT}\cos\omega T}{z^2-2ze^{-aT}\cos\omega T+e^{-2aT}}$	$e^{-akT}\cos\omega kT$
10.		<u>Z</u> Z + a	aK cos KT

z-Transform Theorems

	Theorem	Name
	1110070111	Hante
1.	$z\{af(t)\} = aF(z)$	Linearity theorem
2.	$z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$	Linearity theorem
.3.	$z\{e^{-at}f(t)\} = F(e^{aT}z)$	Complex differentiation
4.	$z\{f(t-nT)\} = z^{-n}F(z)$	Real translation
5.	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$	Complex differentiation
6.	$f(0) \doteq \lim_{z \to \infty} F(z)$	Initial value theorem
7.	$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Final value theorem

Note: kT may be substituted for t in the table.

A) A laser printer uses a laser beam to print copy rapidly for a computer. The laser is positioned by a control input, r(t) which is the desired position of the laser beam.

$$Y(s) = \frac{5(s+100)}{s^2 + 60s + 500}R(s).$$

- (I) If r(t) is a unit step input find the output y(t). [6 marks] (II) What is the final value of y(t)? [2 marks] (III) What is the rise time of y(t)? [8 marks]
- B) Use the input feed-forward format to determine a state space representation for a system with the transfer function

$$\frac{Y(s)}{R(s)} = \frac{(s+10)^2}{s^4 + 12s^3 + 23s^2 + 34s + 40}$$
 [12 marks]

C) A feedback control system has a process transfer function $G(s) = \frac{K(s+40)}{s(s+10)}$

and a feedback transfer function
$$H(s) = \frac{1}{s+20}$$

- (I) Determine the limiting value of gain K for a stable system. [6 marks]
- (II) For the gain K that results in marginal stability system, determine the magnitude of the imaginary roots. [2 marks]
- (III) Determine the steady state error. [4 marks]

A unity feedback system has $GH(s) = \frac{K(s+10)}{(s+2)(s+5)}$

Find

A) the breakaway points on the real axis and the gain K for this point,

B) the gain and the roots when two roots lie on the imaginary axis.

[6 marks]

C) Sketch the root locus.

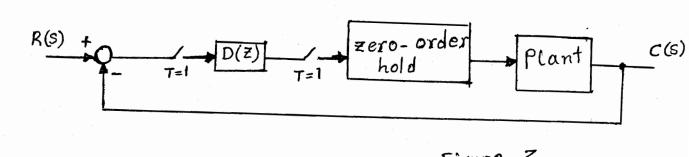
[7 marks]

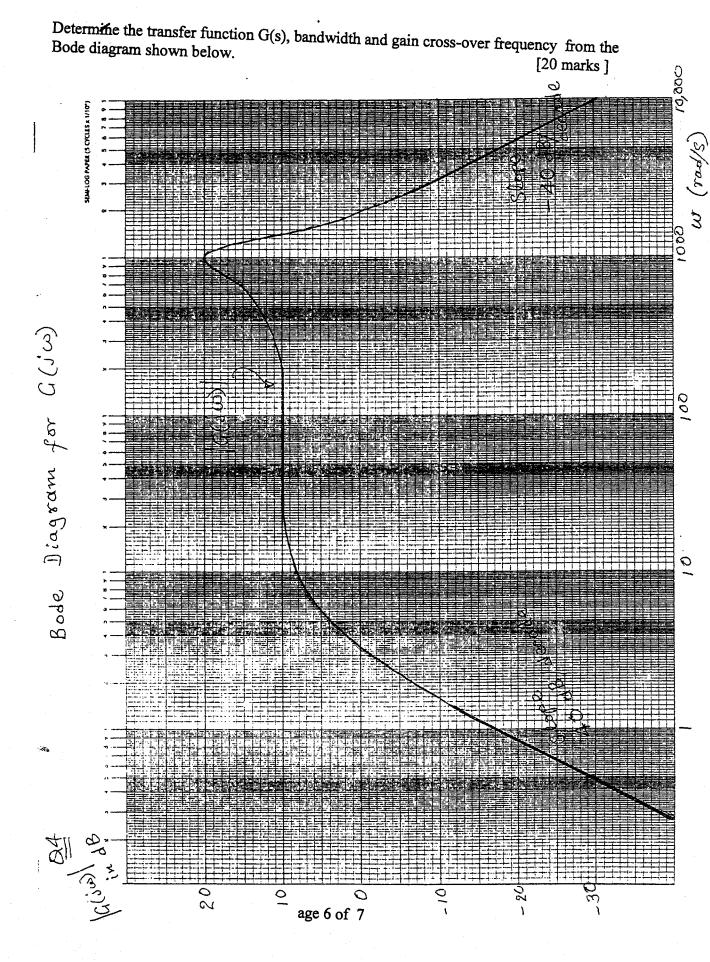
Consider a system as shown below in Figure 3 with a zero-order hold, a plant

$$G_p(s) = \frac{1}{s(s+10)}$$

and T=1 seconds.

- (I) Let D(Z) = K and determine the transfer function G(s)D(z). [6 marks] A) [8 marks]
 - (II) Calculate the maximum value of K for a stable system.
- $G_c(s) = 100 \frac{s + 50}{s + 100}$ when T=0.01 seconds [6 marks] B) Determine D(z) from





A) When is phase-lag compensation not applicable?	[3 marks]
B) What are the two disadvantages of phase-lead compensation?	[6 marks]
C)Why are pneumatic controllers popular in industry?	[3 marks]
D) Write down the equation for a PID controller and define all the necess	ary terms and
constants	[8 marks]