UNIVERSITY OF SWAZILAND MAIN EXAMINATION, MAY 2007

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

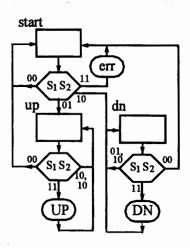
TITLE OF PAPER: DIGITAL ELECTRONICS II

COURSE CODE: E442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- There are seven questions in this paper. Answer any FIVE questions.
- 2. Each question carries a total of 20 points as indicated.


THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE

ASM Chart:

Q1a 10pts: Drive a state table from the given ASM chart on the right.

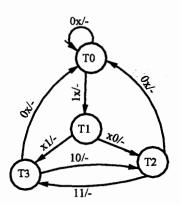
Q1b 10pts: Convert the given ASM chart on the right into a state diagram.

Registers and Counters:

Q2a 10pts: Draw a block diagram to show all control signals, data inputs, and data outputs of a universal binary up-down counter.

Q2b 10pts: For a universal binary up-down counter, describe, using block diagram, two techniques to change the counting mod to 9.

Register-Transfer Circuit:


- Q3 It is required to exchange data between two registers regA and regB. Use RAM as the intermediate storage device. regA, regB, and RAM are of the same byte size and in a common bus structure.
 - (a) 10pts: Draw the hardware circuit for this system. Of course, MAR, MBR, and memory unit must be included.
 - (b) 10pts: Use registry language to describe the operation.

Practical design with ASM


Q4 20pts: Design an ASM chart of the operation process of a vending machine. It is a machine of returning no change and dispenses a can when the user inserts an amount equal or more than E2.50. A coin recognizing interface will input an appropriate code to the system as follows: 00=no coin, 01=50 cents, 10=E1.00, and 11=E2.00. A dispensing output is generated when there is enough money, to dispense a can. You must break the whole operation process into several stages or states. The suggested stages are: "insert coin", "more coin", "no more", and "dispense".

Control Circuit Design

- Q5 20pts: Shown below is a 4-state state diagram of a control unit where control inputs are xy and output is nothing, as a whole symbolically xy/-. Design the control circuit by the sequence register and decoder structure with two JK ffs G_2 and G_1 .
 - (a) Use the decoder outputs as conditions for the present states.
 - (b) Use the ff outputs as conditions for the present states. Compare the two results and comment on the advantages and disadvantages in each case.

- Q6 20pts: Shown on the right is the flowchart of a digital system that multiplies two unsigned binary integers (assume 4-bit data) by the repeated addition method.
 - (a). List the register transfer statements executed in each state,
 - (b). Draw a state diagram for the control,
 - (c). Design the control by the one ff per state structure,
 - (d). Draw the whole circuit of the system in a block diagram form.

Micro-Operation and Simple Computer: Q7 An instruction is specified as follows:

Mnemonic Description Function
ADI OPRD Add operand to RegA A←A+Oprd

- (a) 10pts: List the sequence of micro-operations (given in the textbook) for executing this instruction. Note that this operand is located next to the Op-Code in the memory address.
- (b) 10pts: Design with blocks the circuit required to perform this instructtion. This circuit is not meant to be a general computer but a circuit sufficient for this instruction only. All control signal must be included and marked.