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QUESTION ONE

(a) Determine if each of the following is a probability density function or not

®3[Je- (3 marks)
(i) 2¢ ] -0.5) (3 marks)

(b) If the probability of a single digit error is 0.01, calculate the probability of having
more than 2 errors occurring in a 10-digit codeword. Assume that all events are
statistically independent.

(6 marks)
(c) Calculate the inverse Fourier Transform for the following signal (4 marks)
k -B<wo<B
X(@)= “
0 elsewhere
i e® >0 i i
(d) Given that x(t) ={0 <0’ determine the Fourier Transform of x(t — )
<
(3 marks)

(e) Let the signals x[n] and h{n] represent the signals shown below

x[n] hin}
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Both signals are zero outside the indicated range of n. Sketch x{rn]* hn]

(6 marks)



QUESTION TWO

(a) Determine the energy spectral densities of the following functions

@ [T¢-2 (4 marks)
Gi) [Tean (4 marks)

(b) Evaluate and plot the magnitude spectrum of the 8-point DFT for the following
signal. The sampling frequency is 8 KHz

x(t) = sin(271300¢) volts (12 mark)
(c) A random voltage has a pdf given by
pdflV) = 0.458(V - 3) + xu(V+ 3) e
where u( ) is a unit step function
(i) find the probability that V =3 (1 marks)

(ii) find the value of x (4 marks)



QUESTION THREE

(a) Given the following two signals x(t) and h(t), sketch their convolution result

(10 marks)
x(t) ; h(t)
A A
1 1
2 -
I > >
1 t 1 t
-1
(b) A random variable has a pdf given by
pdfiV) = u(V)3e'3v , where u( ) is a unit step function
(i) Find the DC value (3 marks)
(ii) Find the power dissipated in a 1Q2 load (5 marks)
(c) Given the Fourier Transform pair x(f) & X (@), Show that
dx
— > jaX (o
7 (@)
(3 marks)

(d) An N-sample signal x[n] has the DFT X[k]. Write down the expression for the DFT
of the following signals ‘

() 2x{n]+x[n+1] (2 marks)
(i) x{n]x{n-1] (2 marks)



QUESTION FOUR

(a) From the definition of the Fourier Transform, show that
x(t—1t,) © e '™ X () (5 marks)

(b) Sketch the autocorrelation function of the following rectangular pulse

x() = 2[ [{t-1.5)

(10 marks)

2-&-

> y[n]

Find its digital transfer function and the first four output values for a weighted unit-
impulse input 20[n] fork =0.5
(7 marks)

(d) Sketch the convolution of the two functions shown below

<0 70) (3 marks)




QUESTION FIVE

(a) Find and sketch the Fourier Transform of the following signal (3 marks)
x(t)
14
0 t g
(b) Find x[n], 0 <n < 3, using long division for X(z) (5 marks)
1+2z7!
14227 + 4272

(c) A digital processor is described by a unit impuise response, h[n] =3, 4, 2, 3]. If the
input sequence is x{n] ={ 2, 1, 3, 0, 5], determine the output, y[n], by using circular
convolution

(5 marks)

(d) Find the Fourier transform of the following signal (10 marks)

x(#) = 0.5[x,(t) - x,(¢)]

X, (t) Xy (t)

1 1

4

v

10 1 ot -1 t

(e) How does a Butterworth filter approximate an ideal, ‘rectangular’ response
characteristic
(2 marks)



Table 1 .

Properties of the Fourier Transform

" Property Signal Fourier transform
' x(t) © X(e)-
x;(t) Xl(m)
x,(1) Xw)
Linearity a,x,(2) +ayx,(2) a; X (@) + 2, X(0)
Time shifting x(t—tg) e~ X(w)
Frequency shifting e x(t) X(w = wyp)
Time scaling (at) ~x{2
X x(at . mX( —a- )
Time reversal x(—t) X(~w)
Duality X() 27x(-w)
o da(1)
Time differentiation — . joX(w)
Frequency differentiation (=jt)x(e) X (w)
i) : dw
: 1
Integration [ =)dr. TXO50) + —X(w)
Convolution x(t)e x,(t) . X)X, (),

, 1 .
Multiplication - x(t)x,(1) i;xl_(w)t Xy(w) -
Real signal L W)= N +x,)  X(w)=Al)+Bw)

\ X(~0)=X*w)
Even component N x(t) Re{X(w)} = A(w)
Odd component z(t) © j Im{X(w)} = jB(w)
Parseval’s relations '
" 20X da = [~ X Wx)da -
Y 1 Y
_ [xx0dr= o [ X(@)X(~w)do

[ 1ok drm o [ X e

Table 2 Some Common z-Transform. Pairs

x{n] X(2) ROC
8(n] 1 All z
1 z '
un) Pt fz|>1
) 1! z
—u[—r.:—ll 1-z71'z-1 ' F2|<1
8ln —m] " All 7 except 0 if (m > 0) or ® if (m < 0)
1
a"u[n] 1-¢z'.'1'z:a lz|>lal .
1
-a"u-n--1] . T_—E:,-.zia |z <lal
. -1 .
na*uln] 1t ——a-z———z,——a—z—-; 1z{>lal
A-a ) ooy
-1
—na"—n - 1] g e e {2l <al
(1'—:;:'1)z (z-a)
’ ' 1 z 1
(n+1)a~u[n] m, ZTG] lzl>[a|
z2 - (cos )z
(cos .Q.on)u{n] m |Z| >1
. (sin Qg)z
(sm Qon)u[n] m |Z| >1
. 22—~ (reos Qg)z .
(r* cos Ron)ulx] 22— (2rcos ) °z+r’ l2l>r
\( a)
. (rsinfly)z .
(r*sin Qgnidn] Zi— (2roos Do)z 417 lzl>r
" 0sn<N-1 C1-aMH
{0 otherwise 1-az"! lzI>0

7



TABLE 3 = FOURIER TRANSFORMS OF ELEMENTARY FUNCTIONS

Continuous Time Function x(t) Fourier Transform X{jw)

Remark

4
u(n)

a0
8(t - o)

Y o b(t—=nT)

rect(t/t)

sinfwot) _ wo

i — sinc (wor)

exp (jwol)
cos (wo!)

sin(wpt)

cos (wot)u(t)
sin (wot)u(t)

exp(—atju(t)
texp {(—at)u(t)
exp(-ait))

{t] exp (—ajt|)

2n8{w)

mé(w) + L

jo
1

exp (~jwl)

2sin (wt/2)

w

()

2r8(w — wo)

= 1 sinc(wt/2)

m[3(w — wo) + 8(w + ax))

%ta(w—wo) - 8(w + wp)]

3150 - w0) + 8@+ wo)]
o

prJpr

b4

37180 = w0) ~ 8( +on))

-+

K
1
a+jo

pr e

_t

(@+jo?
2a

a?+ o?

2(a% — «?)
a2 + o

Constant, noncausat,
Unit-step function, causal.

Delta distribution, noncausal.

. Deléyed deita distribution, noncausal.

Impulse train.

Rectangular pulse, noncausal.

Noncausal,
Complex exponential, noncausal.

Noncausal.

Noncausal.

Causal.
Causal.

Re[a]>0, causal.
Re{a)>0, causal.
Re{a]>0, noncausal.

Noncausal.




Table 4: SOME PROPERTIES OF THE DFT

1. Linearity
a,x,[n]+a,x,[n] & a X [k]+a,X,[k]

2. Time-shifting

xin—n,] € X[kle’
3. Modulation/Multiplication

x,[n]x, [n] © %;ZX [m]X [k~ m]

4. Frequency Shifting

W™ x{n] © X[k -k,]
5. Time reversal

x[-n] & X[-k]

6. Convolution
N-1

Y. x,[n)x,[m - n] & X,[k1X,[k]

24m,
N

= X[k =



