UNIVERSITY OF SWAZILAND .

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONIC ENGINEERING

MAIN EXAMINATION 2007

TITLE OF PAPER

COMPLEX VARIABLES

COURSE NUMBER

E471

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.

THIS PAPER HAS SEVEN PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

E471 COMPLEX VARIABLES

Question one

- (a) Convert the given complex number $\frac{\sin(2+i)}{(5-3i)}$ into its polar form and express its phase angles in terms of degrees. (4 marks)
- (b) Given the following complex function $f(z) = \frac{z^2 2e^z + 1}{(z+5)}$ where z = x + iy,
 - (i) find its u(x,y) and v(x,y), (3 marks)
 - (ii) check for its analyticity, (4 marks)
 - (iii) plot the mapped image of u(x, y) = 2 and u(x, y) = 4 curves onto the z-plane and show them in one display in z-plane for x = -3 to +3 and y = -3 to +3. (4 marks)

 (Note: f(z) = u(x, y) + iv(x, y))
- (c) Determine the values of a such that $u(x,y) = e^{ax} \cos(5y)$ is a harmonic and then find its conjugate harmonic v(x,y) for each values of a.

(10 marks)

Question two

- (a) Evaluate the value of the following complex line integral $\int_C \frac{z+3}{\left(z+4\right)\left(z-6\right)} \, dz$ if
 - (i) C: the shortest path from the origin to -6-8i, (7 marks)
 - (ii) C: the counter clockwise circular path from the origin to -6-8i with the centre of the circle at -3-4i and the radius of 5.

 (Hint: set $x=-3+5\cos(t)$, $y=-4+5\sin(t)$ where $t=\tan^{-1}\left(\frac{4}{3}\right)$ to $\pi+\tan^{-1}\left(\frac{4}{3}\right)$)

Compare the answer here with that obtained in (a)(i) and make brief comment. (10 marks)

(b) Given a complex function $f(z) = \frac{3}{2z+6}$ and the expansion centre as z=4i, divide the space into two regions and find the convergent series expansion of f(z) in those two regions. (8 marks)

Question three

(a) Evaluate the value of the following contour integral

$$\oint_C \frac{z \cosh\left(\frac{\pi z}{9}\right)}{z^4 + 13z^2 + 36} dz$$

- (i) if C: the boundary of the rectangular box with vertices ± 12 and $\pm \frac{7}{3}i$, and looping in counterclockwise sense. (5 marks)
- (ii) if C: the boundary of the sphere $|z+5i|=\frac{9}{4}$, and looping in counterclockwise sense. (5 marks)
- (b) Given the following definite integral:

$$\int_0^{2\pi} \frac{\cos(2\,\theta)}{3+\cos(\theta)} \,d\theta$$

- (i) use int command to find its value, (3 marks)
- (ii) convert it to a complex contour integral, evaluate the value of this contour integral. Compare it with that obtained in (i). (12 marks)

Question four

(a) Evaluate by the method of residue integration the following improper integrals:

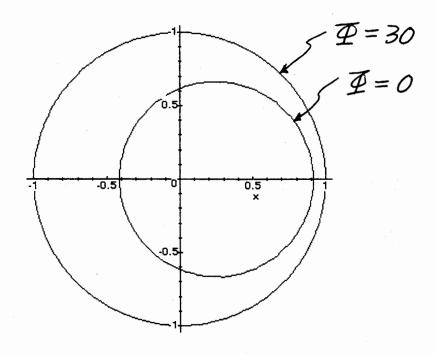
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + x + 1} dx \qquad \text{and} \qquad \int_{-\infty}^{\infty} \frac{\sin(x)}{x^2 + x + 1} dx \qquad (15 \text{ marks})$$

(b) Find the Cauchy principal value of the following integral:

$$\int_{-\infty}^{\infty} \frac{1}{x^3 + 4x^2 + 7x + 6} \, dx \tag{10 marks}$$

Question five

A pair of long, non-coaxial, circular cross-section conductors is statically charged such that the inner conductor (radius of $\frac{2}{3}$ and centred at $\left(x=\frac{1}{4},y=0\right)$) is at zero potential, i.e., $\Phi=0$ volt, while the outer conductor (radius of 1 and centred at origin) is maintained at $\Phi=30$ volts as shown in the diagram below:



Use the linear fractional transformation of the form $w=\frac{z-b}{b\,z-1}$ to transform the above given non-coaxial circles in z-plane $\left(z=x+i\,y\right)$ to two coaxial circles in w-plane $\left(w=u+i\,v\right)$,

(a) find the appropriate value of b such that the inner circle of radius $\frac{2}{3}$ maps to a coaxial circle of radius r_0 (< 1) . Find also the value of r_0 . (11 marks)

Question five (continued)

- (b) since the general solution for coaxial conductors can be written as $\Phi = k_1 \ln(|w|) + k_2 \text{ , determine the values of } k_1 \text{ and } k_2 \text{ from the given}$ boundary conditions . (7 marks)
- (c) plot the equal potential surfaces $\Phi=0$, $\Phi=10$, $\Phi=20$ and $\Phi=30$ in z-plane and show them in a single display. (7 marks)