UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION

2006/7

TITLE OF PAPER : ADVANCED CONTROL SYSTEMS

COURSE NUMBER: EIN 530

TIME ALLOWED : THREE HOURS

INSTRUCTIONS: ANSWER ALL FOUR QUESTIONS

EACH CARRY 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE **INVIGILATOR**

Partial Table of z- and s-Transforms

	. f(t)	F(s)	F(z)	f(kt)
!.	u(t) = 1	<u>1</u> s	$\frac{z}{z-1}$	u(kT)
2.	<i>t</i>	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
3.	t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n$
4.	e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$	e^{-akT}
5.	$t''e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin ω <i>t</i>	$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	$\sin \omega kT$
7.	cos ωt	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	$\cos \omega kT$
S.	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-itkT}\sin\omega kT$
9.	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\cos\omega kT$
10.	A	(3 + 4) 1 6	<u>Z</u>	aK Cos KT
10.				•

z-Transform Theorems

	Theorem	Name	
1	$z\{af(t)\} = aF(z)$	Linearity theorem	
2	$z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$	Linearity theorem	
3.	$z\{e^{-at}f(t)\} = F(e^{aT}z)$	Complex differentiation	
ی. 4.	$z\{f(t-nT)\} = z^{-n}F(z)$	Real translation	
5.	$z\{t f(t)\} = -Tz \frac{dF(z)}{dz}$	Complex differentiation	
6.	$f(0) = \lim_{z \to \infty} F(z)$	Initial value theorem	
7.	$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Final value theorem	

Note: kT may be substituted for t in the table.

page 2 of 6

Pole-placement techniques require that a system be completely controllable and observable to in order to allow the arbitrary placement of closed-loop poles. For a system represented by the following equations

$$\dot{x}_1 = x_2$$

$$\dot{x} = x_3$$

$$\dot{x}_3 = -x_1 - 2x_2 - 3x_3 + u$$

$$y = a_1 x_1 + a_3 x_3$$

Where a_1 and a_3 are constants.

A) Determine whether this system is controllable

[10 marks]

$$Y(s) = \frac{5(s+100)}{s^2 + 60s + 500}R(s).$$

B) if $a_1 = 1$, determine the condition on a_3 for this system to be observable. [15 marks]

In design of state variable feedback systems the full-state control law plus the observer make up a compensator. Using the requirements stated below, determine

A) the state-feedback matrix K, and

[13 marks]

B) the observer gain matrix L for a system represented by

[12 marks]

$$\dot{x} = \begin{bmatrix} -5 & -2 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Requirements

For full state-feedback: settling time = 1 second and $\zeta = 0.93$

For the observer : dominant roots are at $s = -3 \pm j3$

Consider a system as shown below in Figure 3

Figure 3

For this system

A) Draw Bode diagrams [14 marks] B) Determine the phase margin using the Bode diagrams [2 marks]

C) If the desired phase margin is 40° design a compensator to achieve this requirement.

[9 marks]

Consider the computer-compensated system shown in Figure 4 when T = 1 second.

Figure 4

$$G(s) = \frac{K}{s(s+1)}$$
 $D(z) = \frac{z - 0.3678}{z + a}$

Select the parameters K and α so that the transfer function $T(z) = \frac{Y(z)}{R(z)} = \frac{1}{z}$

[25 marks]