UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2008

TITLE OF PAPER: INTRODUCTION TO ANALOG & DIGITAL ELECTRONICS

COURSE CODE: E212

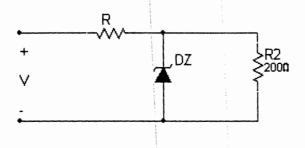
TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer question **one** and any other **three** questions.
- 2. Question one carries 40 marks.
- 3. Questions 2, 3, 4, and 5 carry 20 marks each.
- 4. Marks for different sections are shown in the right-hand margin

This paper has 6 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.


- A) A reference voltage of 3 V is required to drive a circuit which has an effective input resistance of $R_2 = 200\Omega$. The reference voltage is to be produced from a supply voltage V which can vary between 4 and 4.5 V. A suitable circuit might be that shown in Figure 1A. The zener voltage V_z is 3 V. Calculate:
 - (I) the current I₁ flowing in the load resistor R₂.

[2 marks]

(II) value of the resistor R

[3 marks]

(III) the maximum power dissipated in the zener or the power rating of the zener.

[4 marks]

Figure 1A

B) (I) Write in binary the decimal (56.21).

[5 marks]

(II) Write in decimal the binary (11011.001).

[3 marks]

(III) Simplify the boolean equations $X = C.(A + \overline{B}.(\overline{D} + E + \overline{C}) + \overline{B}.C) + A$;

$$Y = (ABC + C).(A + B).\overline{A}$$

[8 marks]

C) (I) Derive an expression for the output f(t) of the circuit shown in Figure 1C.

[5 marks]

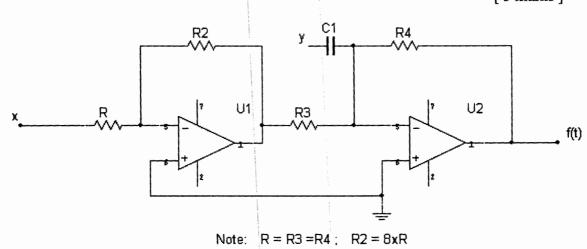


Figure 1C

II) Design a summing amplifier to perform the following operation

$$V_{out} = V_1 + 5V_2 + 2V_3.$$

[10 marks]

For the common emitter circuit shown in Figure 2, $\beta = 79$, $V_{BEQ} = 0.6V$, $R_1 = 139 \text{ k}\Omega$, $R_1 = 18\Omega$, and $R_3 = 72 \Omega$

(A) Find the voltage V_{CEQ} and current I_{CEQ} .

[10 marks]

(B) Draw the equivalent small signal simplified hybrid- π circuit.

[5 marks]

(C) With $g_m = 40I_{EQ}$ and $r_\pi = \frac{\beta}{g_m}$ determine the voltage gain $\frac{v_0}{v_{in}}$

[5 marks]

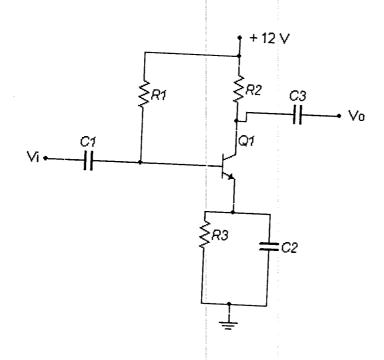


Figure 2

- A) Sketch the input characteristic of a Bipolar Junction Transistor for a common-emitter configuration.

 [6 marks]
- B) Sketch the output characteristic of a Bipolar transistor for a common-emitter configuration. Label the Saturation and Active regions

[10 marks]

C) What is the major difference in how BJT's and FET's operate?

[4 marks]

For the logic circuit shown in Figure 4,

- A) Derive a Boolean expression to describe its operation and simplify your expression.
- B) Draw a truth table of Q = A + BC.

[16 marks] [4 marks]

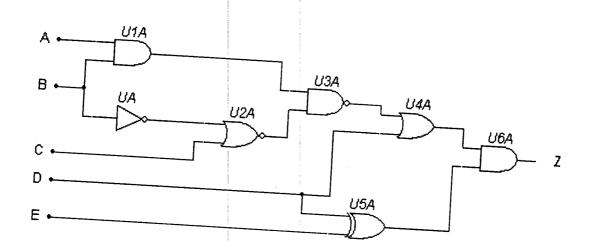


Figure 4

A 2N5486 n-channel JFET has pinch-off voltage of - 6V and $I_{DSS} = 14$ mA. When this transistor is used in the circuit shown in Figure 5, the drain voltage is 7 V and $R_D = 2 k\Omega$. Calculate A) the value of I_D

- B) the value of V_{GS}

[3 marks]

- C) the value of the resistor R_s.
- D) If $g_m = 0.002$ and $r_d = 100 \text{k}\Omega$ then draw the small signal equivalent circuit and obtain the [4 marks] [10 marks]

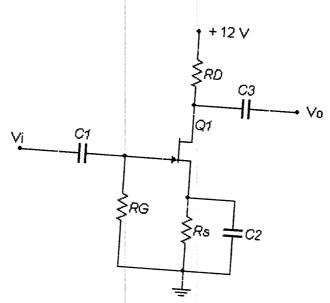


Figure 5