UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2007

TITLE OF PAPER: CONTROL SYSTEMS

COURSE CODE: E430

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer question one and any other three questions.
- 2. Question one carries 40 marks.
- 2. Questions 2, 3, 4, and 5 carry 20 marks each.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 7 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Table of Laplace and Z Transforms

Entry #	Laplace Domain	Time Domain	Z Domain (t=kT)
1	1	δ(t) unit impulse	1 ,
2	$\frac{1}{s}$	u(t) unit step	$\frac{z}{z-1}$
3	$\frac{1}{s^2}$	t	$\frac{Tz}{(z\!-\!1)^2}$
4	$\frac{1}{s+a}$	· c ^{-at}	$\frac{z}{z-e^{-eT}}$
5		b^k $(b = e^{-aT})$	$ \frac{z}{z-e^{-aT}} $ $ \frac{z}{z-b} $
6	$\frac{1}{(s+a)^2}$	te ^{-et}	$\frac{\mathrm{Tz}\mathrm{e}^{-\mathrm{a}\mathrm{T}}}{\left(\mathrm{z}-\mathrm{e}^{-\mathrm{a}\mathrm{T}}\right)^{2}}$
7	$\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$	$\frac{z(1-e^{-aT})}{a(z-1)(z-e^{-aT})}$
8	$\frac{b-a}{(s+a)(s+b)}$	e ^{-at} — e ^{-bt}	$\frac{z(e^{-aT}-e^{-bT})}{(z-e^{-aT})(z-e^{-bT})}$
9	$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} - \frac{e^{-at}}{a(b-a)} - \frac{e^{-bt}}{b(a-b)}$	
10	$\frac{1}{s(s+a)^2}$	$\frac{1}{a^2} \left(1 - e^{-at} - ate^{-at} \right)$	
11	$\frac{s}{(s+a)^2}$	(1 – at) e ^{-at}	
12	$\frac{b}{s^2 + b^2}$	sin(bt)	$\frac{z\sin(bT)}{z^2 - 2z\cos(bT) + 1}$
13	$\frac{s}{s^2 + b^2}$	cos(bt)	$\frac{z(z-\cos(bT))}{z^2-2z\cos(bT)+1}$
14	$\frac{b}{(s+a)^2+b^2}$	e ^{-at} sin(bt)	$\frac{ze^{-aT}\sin(bT)}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
15	$\frac{s+a}{(s+a)^2+b^2}$	e ^{-at} cos(bt)	$\frac{z^2 - ze^{-aT}\cos(bT)}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
16	$\frac{Bs+C}{(s+a)^2+\omega_n^2}$	$e^{-at}\left[B\cos(\omega_n t) + \frac{C - aB}{\omega_n}\sin(\omega_n t)\right]$	
17		$\sqrt{\frac{a^2d^2 + b^2 - 2abc}{d^2 - c^2}} d^n \cos(\beta n + \gamma)$ $\beta = \cos^{-1}\left(-\frac{c}{d}\right), \gamma = \tan^{-1}\left(\frac{ac - b}{a\sqrt{d^2 - c^2}}\right)$	$\frac{az^2 + bz}{z^2 + 2cz + d^2}, d > 0$
Prototype Second Order System (ζ<1, underdampded)			
18	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$		$\frac{z}{z-1} - \frac{1}{\sqrt{1-\zeta^2}} \frac{z^2\sqrt{1-\zeta^2} + z\sin\left(\omega_n\sqrt{1-\zeta^2}T - \cos^{-1}(\zeta)\right)e^{-\zeta\omega_nT}}{z^2 - 2ze^{-\zeta\omega_nT}\cos\left(\omega_n\sqrt{1-\zeta^2}T\right) + e^{-2\zeta\omega_nT}}$
19		$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nt}\text{sin}\big(\omega_n\sqrt{1-\zeta^2}t\big)$	$\frac{\omega_n}{\sqrt{1-\zeta^2}} \frac{z e^{-\zeta \omega_n T} \sin\left(\omega_n \sqrt{1-\zeta^2} T\right)}{z^2 - 2z e^{-\zeta \omega_n T} \cos\left(\omega_n \sqrt{1-\zeta^2} T\right) + e^{-2\zeta \omega_n T}}$
20	$\frac{s\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$\frac{-\omega_n^2}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\cos^{-1}(\zeta))$	$\frac{-\omega_n^2}{\sqrt{1-\zeta^2}} \frac{-z^2\sqrt{1-\zeta^2}+z\sin\left(\omega_n\sqrt{1-\zeta^2}T+\cos^{-1}(\zeta)\right)e^{-\zeta\omega_nT}}{z^2-2ze^{-\zeta\omega_nT}\cos\left(\omega_n\sqrt{1-\zeta^2}T\right)+e^{-2\zeta\omega_nT}}$

- (a) A home shower with separate hot and cold water valves is an example of a two input control system. A desired temperature and a desired flow of water is required. Sketch a block diagram of this closed-loop system. [10 marks]
- (b) A feedback system is shown in Figure 1. The input R(s) is a unit step.
 - (i) Determine the steady state error when $G_p(s) = 1$. [7 marks]
 - (ii) Select an appropriate value for $G_p(s)$ so that the steady-state error is equal to zero.

[9 marks]

Figure 1

(c) A feedback control system has a characteristic equation

$$s^3 + (1+K)s^2 + 10s + (50-5K) = 0$$

- (i) Determine the range of K for which the system is stable.
- (ii) At what frequency does the system oscillate.

[9 marks]

(d) (i) What is the difference between a controller and a compensator? [2 marks] (ii) Give three examples of classification of industrial control action. [3 marks]

A mechanical system representing the vibration of a machine with unbalanced load is shown in Figure 2.

Obtain the characteristic equation of this system when the input is F(t).

[20 marks]

A system shown in Figure 3 has a plant transfer function $G_p(s) = \frac{100}{s^2 + 100}$

(a) Determine the impulse transfer function $G_p(z)$

[10 marks]

(b) Determine whether this system is stable.

[3 marks]

(c) Determine the magnitude of the impulse responses for the first four samples. [7 marks]

Figure 3

Draw to scale the Bode Magnitude and Phase plots of the transfer function

$$G(s) = \frac{(1 + \frac{s}{1500})^2 (1 + \frac{s}{10000})}{10(1 + \frac{s}{500})^2 (1 + \frac{s}{100000})}$$

[20 marks]

Draw the root locus for a unity feedback system with

$$G(s) = \frac{k(s+10)}{s(s+1)(s+20)}$$

and indicate on the plot the roots when k = 100.

[20 marks]