UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION 2007/08

TITLE OF PAPER :

SIGNALS II

COURSE NUMBER:

E462

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN

IN THE RIGHT-HAND MARGIN

THIS PAPER CONTAINS 8 PAGES INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

[3]

QUESTION ONE

(a) Given that the probability density function for wait in line at a counter in the production of Op-amps is

$$x(t) = \begin{cases} 0.1e^{-t/10} & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases},$$

where t is the number of minutes spent waiting in line.

- (i) Determine the probability that an Op-amp will wait in line for at least 6 minutes.
- (ii) Determine the mean wait time. [5]
- (b) Suppose that x(t) has the Fourier transform $u(1-\omega^2)$. Use the appropriate Fourier transform pairs/properties to find the Fourier Transform of the following signal;

$$x(5-3t)$$
. [6]

(c) Calculate the linear convolution of the following discrete-time sequences and express your result, *y[n]*, in terms of the delta function;

$$x[n] = \partial[n+1] - 2\partial[n] + 3\partial[n-1], h[n] = \partial[n] + 4\partial[n-1] - 2\partial[n-2] + \partial[n-3].$$
 [6]

(d) Find the inverse Fourier transform of the following signal; [5]

$$X(\omega) = \frac{1}{1+j\omega}\cos(2\omega)e^{-j5\omega}.$$

QUESTION TWO

(a) Find the response of a linear system to an input of x(t) = u(t) - u(t-4) if the impulse response h(t) = r(t).

[note: r(t) is the ramp function and u(t) is the unit step]

[8]

(b) Either by calculation and/or the use of Fourier Transform tables, find the Fourier Transform, $X(\omega)$, of the following signals:

(i)
$$x(t) = e^{-2t} \cos(4t)u(t)$$
 [5]

(ii)

[8]

[note: express your answer in terms of the sinc function]

(c) An N-sample signal x[n] has the DFT X[k]. Use the appropriate DFT property(ies) to write down expressions for the DFTs of the signals;

(i)
$$x[n]x[n-1]$$
.

[2]

(ii)
$$2x[n] + x[n+1]$$
.

[2]

QUESTION THREE

Note: the term z-transform generally means the unliateral z-transform. Hence there is no need for ROC specification

(a) Evaluate the Z-Transform of the following sequence:

$$x[n] = 2(0.8)^n u[n].$$
 [4]

(b) For the following digital filter structure

(i) Find the transfer function.

- [3]
- (ii) Find the first four values of the output sequence y[n] corresponding to to the input $x[n] = \partial[n]$. [4]
- (iii) Find the first four values of the output sequence y[n] corresponding to the input x[n] = u[n]. [4]
- (c) Find and sketch y(t) = x(t) * h(t) for the following functions; [10]

[2]

QUESTION FOUR

Note: the term z-transform generally means the unilateral z-transform. Hence there is no need for ROC specification

(a) Determine if the following function is a probability density function;

$$4rect(4(t-2)). [3]$$

(b) Determine the energy spectral density of the following function;

$$-2rect(4t+2). [6]$$

(c) Compute the DFT of the following 4-point causal sequence; [10]

$$x[n] = (-1)^n.$$

(d) Find the inverse Z-transform for a causal stable system defined by

$$H(z) = \frac{2 - \frac{5}{6}z^{-1}}{1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}}.$$
 [4]

(e) Find the z-transform of the following signal;

$$x[n] = u[n] - u[n-4].$$

[2]

QUESTION FIVE

- (a) Explain the following terms when used in association with filters:
 - (i) cut-off frequencies [2]
 - (ii) 3 dB bandwidth [3]
- (b) (i) Find the transfer function of the following digital filter [5]

- (ii) Is it a FIR or IIR filter? Justify your answer.
- (c) Determine the bandwidth of an RC low-pass filter with R=10k Ω and C=0.1 μ F. [2]
- (d) Find the impulse response for the following discrete-time system; [6]

$$y[n] + 0.2y[n-1] = x[n] - x[n-1]$$
.

(e) Given the following discrete-time signals evaluate and sketch y[n] = x[n] * h[n]

$$x[n] = \begin{cases} -1, & n = -2 \\ -1, & n = -1 \\ 1, & n = 0 \\ 1, & n = 1 \\ 1, & n = 2 \\ 0, & otherwise \end{cases} h[n] = \begin{cases} 1, & n = 0 \\ 1, & n = 1 \\ 1, & n = 2 \\ 0. & otherwise \end{cases} [5]$$

TABLE 1: PROPERTIES OF THE FOURIER TRANSFORM

MNOJOHOV	Fourier transform	X(m)	$a_1X_1(w)+a_2X_2(w)$	$e^{-/\omega \epsilon}X(\omega)$	$\lambda(w-w_0)$	$\frac{1}{ a }X\left(\frac{a}{a}\right)$	X(-a)	$2\pi x(-\omega)$	$\frac{dX(w)}{dw}$	jaX(a)	$\kappa X(0)\delta(\omega) + \frac{1}{j\omega}X(\omega)$	$X_1(w)X_2(w)$	$\frac{1}{2\pi}X_1(\varpi)\bullet X_2(\varpi)$
	Signal	(1)x	$a_1x_1(t)+a_2x_2(t)$	$x(t-t_0)$	$e^{/a_t} (x(t))$	x(at)	x(-t)	X(t)	(-jt)x(t)	$\frac{dx(t)}{dt}$	$\int_{\infty}^{t} x(\tau) d\tau$	$x_1(t) * x_2(t)$	$x_1(t)x_2(t)$
Property	Tippelly	, incorpie	Lincanny	Time shifting	Frequency shifting	Time scaling	Time reversal	Duality	Frequency differentiation	Time differentiation	Integration	Convolution	Multiplication

PAIRS X(w)
SFORM
R TRAN
TABLE 2: COMMON FOURIER TRANSFORM PAII us time function x(t) Fourier transform X(a)
MON I
12: CON
TABLE
ous time
Continu

	TOWICH UNDSTOTAL X (w)
1	2πδ(,,,)
n(t)	$\pi\delta(a) + \frac{1}{ia}$
8(t)	
$\delta(t-t_0)$	e ⁻ /*6
rect(1/)	$\frac{2\sin(\varpi r_{\sqrt{2}})}{\varpi} = r\sin c(\varpi r_{\sqrt{2}})$
$\frac{\sin(\omega_0 t)}{\pi t} = \frac{\omega_0}{\pi} \sin c(\omega_0 t)$	$rect\left(rac{\omega}{2\omega_o} ight)$
$e^{/\pi \sqrt{\epsilon}}$ $\cos(\omega_0 t)$	$2\pi\delta(\omega-\omega_o) \ \pi[\delta(\omega-\omega_o)+\delta(\omega+\omega_o)]$
$\sin(a_0t)$	$\frac{\pi}{j}[\delta(w-w_0)-\delta(w+w_0)]$
$\cos(w_0t)u(t)$	$\frac{\pi}{2} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{j\omega}{\omega_0^2 - \omega^2}$
$\sin(\omega_o t)u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$
e_a,n(t)	$\frac{1}{a+j\omega}$
te_=1 n(t)	$\frac{1}{(a+jw)^2}$
He- 3	$\frac{2a}{a^2 + \omega^2}$
	$\frac{2(a^2 - \omega^2)}{a^2 + \omega^2} $

SOME COMMON Z-TRANSFORM PAIRS

COMMISSION C-1 KANSFORM PAIRS	X(z)			$ z ^{-1}$, $ z ^{-1}$	z < 1	z^{-m} All z except 0 if $(m > 0)$ or ∞ if $(m < 0)$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	$\frac{1}{z-a}$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a} \qquad z < a $	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$ z > a	$\frac{z^2 - (\cos \Omega_0)z}{z^2 - (2\cos \Omega_0)z + 1} z > 1$	$\frac{(\sin \Omega_0)z}{z^2 - (2\cos \Omega_0)z + 1} \qquad z > 1$	$\frac{z^2 - (r \cos \Omega_0)z}{z^2 - (2r \cos \Omega_0)z + r^2} $ z >r	$\frac{(r\sin\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2} \qquad z > r$
	x[n]	ð[n]	u[n]	~ 1 i - n - 11	[1_ ; i	$\delta[n-m]$	a"u[n]	$a^{n-1}u[n-1]$	- a"u[-n-1]	$na^*u[n]$	(cosΩon)u[n]	$(\sin\Omega_0n)$ u $[n]$	$(r^n \cos \Omega_o n) u[n]$	$(r^n \sin \Omega_0 n) u[n]$

SOME PROPERTIES OF THE DFT

1. Linearity

2. Time-shifting $a_1x_1[n] + a_2x_2[n] \leftrightarrow a_1X_1[k] + a_2X_2[k]$

 $x\{n-n_0\} \leftrightarrow X[k]e^{-j\frac{2\pi k_0}{k}} = X[k]\mu p_n^{k_n}$ 3. Modulation/Multiplication $x_1[n]x_2[n] \leftrightarrow \frac{1}{N}\sum_{m=0}^{k-1} X_1[m]X_2[k-m]$ 4. Frequency Shifting $\mu_N^{k_n} = x[n] \leftrightarrow X[k-k_0]$ 5. Time reversal $x[-n] \leftrightarrow X[-k]$ 6. Convolution $\sum_{m=0}^{k-1} x_1[n]x_2[m-n] \leftrightarrow X_1[k]X_2[k]$