UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION 2007/08

TITLE OF PAPER : SIGNALS II

COURSE CODE : E462

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS : ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN

IN THE RIGHT-HAND MARGIN

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION ONE

(a) An electrical network has the following impulse response

$$h(t) = \begin{cases} 5 \times 10^3 e^{-t/0.001}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

- (i) Find the spectrum of the impulse response [4]
- (ii) Find the network's amplitude response to an input sine wave of amplitude 2 volts and frequency 200 Hz [6]
- (b) Find and sketch (and label) the Fourier transform of the following signal

$$f(t) = \begin{cases} 1 & |t| < a \\ 0 & |t| > a \end{cases}$$
 [7]

(c) Calculate the output y[n] of a digital system whose input is x[n] = [0, 1, -1, 1, 1] and impulse response is h[n] = [3, 2, 4, 1] by using circular convolution [8]

[7]

QUESTION TWO

(a) By calculation and/or use of Fourier transform tables, find the Fourier transform, $X(\omega)$, of the following signals

[note: express your answer in terms of the sinc function]

(ii)
$$x(t) = e^{-3t} \cos(10t)u(t)$$
 [7]

- (b) (i) Define statistically independence when used in association with probability theory. [2]
 - (ii) Two cards are dealt one at a time, face up, from a shuffled pack of 52 cards. Show that these two cards are not statistically independent

 [4]
- (c) What is the difference between cross-correlation and auto-correlation. Give any one typical application where correlation may be used [5]

QUESTION THREE

(a) Given that

$$f(x) = \begin{cases} \frac{x^3}{5000} (10 - x) & \text{if } 0 \le x \le 10\\ 0 & \text{elsewhere} \end{cases}$$

- (i) Show that f(x) is a probability density function [3]
- (ii) Determine $P(X \ge 6)$ [4]
- (b) A digital processor is described by a unit impulse response, $h[n] = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix}$. If the input sequence is $x[n] = \begin{bmatrix} 1 & 4 & 8 & 2 \end{bmatrix}$, determine the output, y[n]
- (c) Given the following probability density function

$$v(t) = \begin{cases} \frac{1}{2}t & 0 < t < 2\\ 0 & otherwise \end{cases}$$

Calculate the following,

- (i) mean [3] (ii) variance
- (d) Sketch and label the Fourier transform of the impulse delta function [2]
- (e) Verify the time-shifting property of the Fourier transform [3]

QUESTION FOUR

(a) Determine f(2 < X < 3) given that the probability density function of the random variable X is given by:

$$f(x) = \begin{cases} \frac{1}{8}(x+1) & \text{for } 2 \le x < 4\\ 0 & \text{elsewhere} \end{cases}$$
 [4]

(b) Find the Z-transform of the following signal:

$$x[n] = 0.5^n u[n]$$

(c) Find the inverse Z-transform of the following signal

$$X(z) = \frac{(z-1)(z+0.8)}{(z-0.5)(z+0.2)}$$
 [5]

(d) Find the Fourier transform of the following signal at frequency f = 3 Hz:

$$x(t) = \begin{cases} t & 0 < t \le 1 \\ 0 & otherwise \end{cases}$$
 [8]

(e) Using the tables of common pairs and properties of the Fourier transform find the Fourier transform of the signal

$$te^{-2|t|} ag{4}$$

QUESTION FIVE

(a) Given the following information, determine y(t) = x(t) * h(t) [10]

- (b) (i) Determine the time series, x[n], of the following DFT components, X[k] = [2, 1+j, 0, 1-j] [8]
 - (ii) Verify that the 12th DFT component is equal to the 0th component in the above components [2]
- (c) Perform the cross-correlation $R_{xy}[k]$ of the following periodic sequences x[n] = [2, 1, 3, 0] and h[n] = [3, 2, 4, 3] [5]

Property	Signal	Fourier transform
Linearity	$x(t) \\ a_1 x_1(t) + a_2 x_2(t)$	$X(\omega)$ $a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting	$x(t-t_o)$	$e^{-j \boldsymbol{\sigma} t_{\boldsymbol{\phi}}} X(\boldsymbol{\omega})$
Frequency shifting	$e^{j\omega_t}x(t)$	$X(\omega-\omega_0)$
Time scaling	x(at)	$\frac{1}{ a } X \left(\frac{w}{a} \right)$
Time reversal	x(-t)	$X(-\omega)$
Duality	X(t)	$2\pi x(-w)$
Frequency differentiation	(-jt)x(t)	$\frac{dX(w)}{dw}$
Time differentiation	$\frac{dx(t)}{dt}$	jaX(a)
Integration	$\int_{0}^{t} x(t)dt$	$\pi X(0)\delta(\omega) + \frac{1}{j\omega}X(\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$

٠.
~
=
_
⋖
0
_
>
_
~
=
77
-
v.
-
_
_
٠,
~
_
-
•
~
-
1
_
~
_
⋍
$\overline{}$
≈
μ.
z
ž
Z
Ž
S
Z
ZOM
NOME
NOMMO
NOMMO
NOMMOC
COMMOD
COMMOD
2 COMMON
2 COMMON
F. 2. COMMON
F 2. COMMON
I.F. 2. COMMON
R P. COMMON
RIE 2. COMMON
ARIE 2. COMMON
ARIE 2. COMMON
TARLE 2: COMMON
TARLE 2. COMMON FOURTER TRANSFORM PAIRS
TARLE 2: COMMON
TARLE 2. COMMON
TARLE 2: COMMON
TARLE 2. COMMON
TARLE 2: COMMON

TABLE 2: COMMON FOURIER TRANSFORM PAIRS function $x(t)$ Fourier transform $X(\omega)$	2πδ(ω)	$\pi\delta(\omega)+\frac{1}{j\omega}$	-	e_/e1a	$\frac{2\sin(\omega r_2)}{\omega} = \tau \sin c(\omega r_2)$	$rect\left(rac{\omega}{2\omega_0} ight)$	$2\pi\delta(\omega-\omega_0) \ \pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$\frac{\pi}{j} \left[\delta(w-w_{_0}) - \delta(w+w_{_0}) \right]$	$\frac{\pi}{2} [\delta(a-a_{\scriptscriptstyle 0}) + \delta(a+a_{\scriptscriptstyle 0})] + \frac{ja}{a_{\scriptscriptstyle 0}^2 - a^2}$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	$\frac{1}{a+j\omega}$	$\frac{1}{(a+j\omega)^2}$	$\frac{2a}{a^2 + \omega^2}$	$\frac{2(a^2-\omega^2)}{a^2+m^2}$
TABLE 2: COMMO Continuous time function $x(t)$	1	n(t)	8(t)	$\delta(t-t_o)$	$rect(t_{\ell})$	$\frac{\sin(\omega_0 t)}{\pi t} = \frac{\omega_0}{\pi} \sin c(\omega_0 t)$	$e^{-l\omega_t}$ $\cos(\omega_0 t)$	$\sin(a_0t)$	$\cos(\omega_0 t) u(t)$	$\sin(\omega_0t)u(t)$	$e^{-at}u(t)$	$te^{-a_1}u(t)$	No- 9	16-011

X(z)

1. Linearity

 $a_1x_1[n] + a_2x_2[n] \leftrightarrow a_1X_1[k] + a_2X_2[k]$

2. Time-shifting

 $x[n-n_0] \leftrightarrow X[k] e^{-j\frac{2\pi k_0}{N}} = X[k] W_N^{k_0}$ 3. Modulation/Multiplication

<u>|z|</u> <u>z</u> <1

-u[-n-1]

u[n]

 $\delta[n-m]$ $a^nu[n]$

 $x_1[n]x_2[n] \leftrightarrow \frac{1}{N} \sum_{m=0}^{N-1} X_1[m]X_2[k-m]$

4. Frequency Shifting $W_N^{-k_0}x[n] \leftrightarrow X[k-k_0]$

 z^{-m} All z except 0 if (m > 0) or ∞ if (m < 0) $\frac{1}{1-\alpha z^{-1}}, \frac{z}{z-a}$ |z| > |a|

 $\frac{1}{1-az^{-1}}, \frac{z}{z-a}$

 $-a^{\prime\prime}u[-n-1]$

|z| > |a|

 $\frac{az^{-1}}{(1-az^{-1})^2}$, $\frac{az}{(z-a)^2}$

|z| > 1

 $\frac{z^2 - (\cos\Omega_0)z}{z^2 - (2\cos\Omega_0)z + 1}$

 $(\cos\Omega_0 n)u[n]$

 $na^{n}u[n]$

<u>|z|</u>

 $\frac{(\sin\Omega_0)z}{z^2 - (2\cos\Omega_0)z + 1}$

 $(\sin\Omega_0 n)u[n]$

<u>|z|</u>

 $\frac{(r\sin\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$

 $(r^n \sin \Omega_0 n) u[n]$

<u>z</u>

 $\frac{z^2 - (r\cos\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$

 $(r^n \cos \Omega_0 n) u[n]$

0 < |z|

 $\frac{1-a^Nz^{-N}}{1-az^{-1}}$

 $\begin{cases} a^n & 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$

5. Time reversal $x[-n] \leftrightarrow X[-k]$ 6. Convolution $\sum_{n=0}^{k+1} x_1[n] x_2[m-n] \leftrightarrow X_1[k] X_2[k]$