UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION

2008/2009

TITLE OF PAPER :

LINEAR ALGEBRA AND VECTOR

CALCULUS

COURSE NUMBER:

E372

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

ANSWER ANY FOUR OUT OF FIVE

QUESTIONS. EACH QUESTION

CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS

ARE SHOWN IN THE RIGHT-HAND

MARGIN.

STUDENTS ARE PERMITTED TO USE

MAPLE TO ANSWER THE

QUESTIONS.

THIS PAPER HAS <u>SIX</u> PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

E372 Linear Algebra and Vector Calculus

Question one

(a) Given the following matrix equation AX = b where

$$A = \begin{pmatrix} 0 & 3 & -2 \\ 1 & -2 & 6 \\ 4 & 5 & -1 \end{pmatrix} , \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad and \quad b = \begin{pmatrix} -21 \\ 29 \\ -24 \end{pmatrix}$$

use the Gauss elimination method to find the solution of X. (7 marks)

(b) Given the following differential equations for a coupled oscillator system as

$$\begin{cases} \frac{d^2 x_1(t)}{dt^2} = -5 x_1(t) + 16 x_2(t) \\ \frac{d^2 x_2(t)}{dt^2} = 4 x_1(t) - 17 x_2(t) \end{cases}$$

- (i) find the eigen frequencies ω and their respective eigen vectors of X , (6 marks)
- (ii) write down the general solutions of $x_1(t)$ and $x_2(t)$ in terms of the eigen frequencies and eigen vectors obtained in (b)(i), (3 marks)
- (ii) if initial conditions are given as

$$x_1(0) = -4$$
, $x_2(0) = 1$, $\frac{dx_1(t)}{dt}\Big|_{t=0} = -2$ and $\frac{dx_2(t)}{dt}\Big|_{t=0} = 3$,

find the specific solutions of $x_1(t)$ and $x_2(t)$. Plot these specific solutions for t=0 to 5 and show them in a single display.

(9 marks)

Question two

- (a) Given any vector function $\vec{F} = \vec{e}_x \ F_x(x,y,z) + \vec{e}_y \ F_y(x,y,z) + \vec{e}_z \ F_z(x,y,z)$, show the following vector identity that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) \equiv 0$. (5 marks)
- (b) Given a vector field $\vec{F} = -\vec{e}_x \ 3 \ y^2 \ e^{-3x} + \vec{e}_y \ (2 \ y \ e^{-3x} 7 \ z^2) \vec{e}_z \ 14 \ y \ z$, find the value of line integral of \vec{F} from the point $P_1 : (1, 2, 0)$ to the point $P_2 : (7, 10, 0)$ along a line path of L, i.e., $\int_{1.L}^{P_2} \vec{F} \cdot d\vec{l}$,
 - (i) if L is a straight line from P_1 to P_2 , (7 marks)
 - (ii) if L is a semicircular path from P_1 to P_2 in counter clockwise sense, i.e., with a radius of 5 and centred at (4,6,0)
 - (iii) is the given \vec{F} a conservative vector field? If so, then find its associated scalar potential. (3 marks)

Question three

Given the following differential equation as:

$$2\frac{d^2 y(x)}{d x^2} + 3\frac{d y(x)}{d x} + 6 y(x) = 0$$

utilize the power series method, i.e., setting $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ and $a_0 \neq 0$,

- (a) write down the indicial equations. Find the values of s and a_1 (by setting $a_0 = 1$). (7 marks)
- (b) write down the recurrence relation. For all the appropriate values of s and a_1 in (a), set $a_0 = 1$ and use the recurrence relation to calculate the values of a_n up to the value of a_8 . Thus write down two independent solution in their polynomial forms. Also write down the general solution of the given differential equation, (10 marks)
- (c) if the initial conditions are y(0) = -2 & $\frac{dy(x)}{dx}\Big|_{x=0} = 1$, determine the values of the arbitrary constants of the general solution in (b). Then plot this specific solution of y(x) for x=0 to 3. (8 marks)

Question four

(a) Given the following partial differential equation

$$x^2 y \frac{\partial^2 u(x,y)}{\partial x^2} + x^2 y \frac{\partial u(x,y)}{\partial x} = -x y^2 \frac{\partial^2 u(x,y)}{\partial y^2}$$

set u(x, y) = F(x) G(y) and utilize the separation of variable scheme to break the above partitial differential equation into two ordinary differential equation.

(8 marks)

(b) The general solution of a one-dimensional wave equation

$$\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u(x,t)}{\partial t^2} = 0$$
 can be written as

$$u(x,t) = \sum_{\forall k} u_k(x,t)$$

= $\sum_{\forall k} (A_k \cos(kx) + B_k \sin(kx)) (C_k \cos(ckt) + D_k \sin(ckt))$

where A_k , B_k , C_k & D_k are arbitrary constants

- (i) by direct substitution, show that the above $u_k(x,t)$ satisfies the given wave equation, (4 marks)
- (ii) after applying two fixed end conditions and one zero initial speed condition, the above general solution can be deduced to $u(x,t) = \sum_{n=1}^{\infty} E_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{c\,n\pi t}{L}\right) \text{ where } E_n \quad (n=1\,,2\,,3\,,\ldots)$ are arbitrary constants. If c=2, L=6 and the initial position of the string is given as $u(x,0) = \begin{cases} 5\,x & \text{if } 0 \le x \le 1 \\ -x+6 & \text{if } 1 \le x \le 6 \end{cases}$ find the values of E_1 , E_2 , E_3 , \cdots , E_8 . Then plot this specific polynomial solutions of t=0, t=0.1 and t=0.2 all for the same range of t=0 and show them in a single display.

(13 marks)

Question five

(a) Given a periodic function f(x) plotted for one period (x = 0 to 10) as

where the bending point of f(x) occurs at x = 6 & f(6) = 12,

- (i) express the above f(x) in terms of step functions and reproduce the above diagram, (4 marks)
- (ii) find the Fourier series of f(x) truncated after n = 4 (i.e., the first five partial sums of its cosine series plus the first four partial sums of its sine series), (8 marks)
- (iii) plot the truncated Fourier series in (ii) for x = 0 to 30. (5 marks)
- (b) Given the following non-periodic function g(x) as

$$g(x) = \begin{cases} 0 & if \quad x < 0 \\ 6 e^{-2x} & if \quad x > 0 \end{cases}$$

express g(x) in terms of its Fourier integral.

(8 marks)