UNIVERSITY OF SWAZILAND **MAIN EXAMINATION DECEMBER, 2008**

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

TITLE OF PAPER:

CONTROL SYSTEMS

COURSE CODE: E430

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

- Answer question ONE and any other THREE questions 1.
- 2. Question one carries 40 marks.
- Questions 2, 3, 4, and 5 carry 20 marks each. 3.
- 4. Mark for different sections are shown in the right-hand margin.
- **5.** Linear graph paper and Linear-Log paper are provided

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS EIGHT (8) PAGES INCLUDING THIS PAGE.

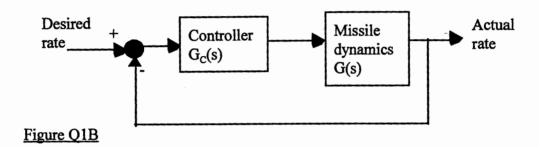
Partial Table of z- and s-Transforms

	. f(t)	F(s)	F(z)	f(kt)
	u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$	u(kT)
2	t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
3.	t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n$
4.	e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z-e^{-aT}}$	e^{-akT}
5.	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin ω <i>t</i>	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	sin ω kT
7.	cos ωt	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	cos ω kT
8.	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-ikT}\sin\omega kT$
9.	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\cos\omega kT$
10.			<u>Z</u>	a ^κ cos κπ

z-Transform Theorems

• .	Theorem	Name
1.	$z\{af(t)\} = aF(z)$	Linearity theorem
2.	$z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$	Linearity theorem
.3.	$z\{e^{-at}f(t)\} = F(e^{aT}z)$	Complex differentiation
4.	$z\{f(t-nT)\} = z^{-n}F(z)$	Real translation
5.	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$	Complex differentiation
6.	$f(0) \doteq \lim_{z \to \infty} F(z)$	Initial value theorem .
7.	$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Final value theorem

- (a) Economic inflation is a positive feedback system. In this system, the input signal called *initial wages* is added to wage increase to produce actual wages. The signal actual wages is used as an input to a process called industry of which the output is prices. Prices multiplied by a gain K_1 is equal to cost of living. The cost of living is manipulated by Automatic cost of living increase from which wage increase is obtained. Draw a closed-loop control system block diagram with all signals, gains, and transmittances labelled. [8 marks]
- (b) A block diagram of a rate loop for a missile system is shown in Figure Q1B. If the desired rate is a unit step, then write a MATLAB script for plotting the actual rate y(t) for 0 < t < 3 seconds and at 0.01 seconds time intervals.



$$G_C(s) = 0.1 + \frac{5}{s}$$
; $G(s) = \frac{100(s+1)}{s^2 + 2s + 100}$.

[13 marks]

(c) Given that a continuous time derivative can be approximated in discrete time by using a backward difference rule as follows $\frac{dx(t)}{dt}\Big|_{t=T} = \frac{1}{T} \{x(KT) - x[(K-1)T]\}$

and the integration of x(t) by the forward-rectangular integration at t = KT is

$$r(KT) = r[(K-1)T] + Tx(KT)$$
 where $r(KT)$ is the output of the integrator at $t = TK$,

determine the z-transform of a PID controller with an s-domain transfer function

$$G_C(s) = 2 + \frac{0.1}{s} + 0.5s$$
 [7 marks]

Question 1 (continued)

(d) Determine the necessary gain K₃ in metres required to maintain a steady state tracking error equal to 1 centimetre between the desired and actual position for the gas-jet propulsion system shown in Figure Q1D when the input is a unit ramp in metres.

[12 marks]

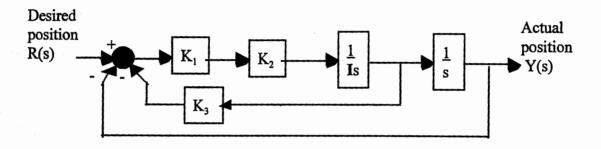


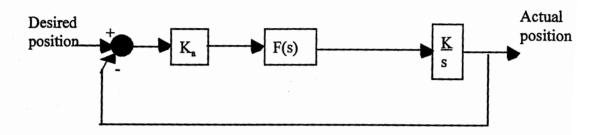
Figure Q1D

Where I is the inertia constant

A linear model of a phase-lock loop is shown in Figure Q2. The limit for the stability of this system is set by the gain K_aK , which is equal to the velocity constant K_v .

- (i) Determine the range of K_v for which the system remains stable.
- (ii) Determine the value of K_{ν} and the location of the roots when the steady state error is 1° and ramp input signal of 100 rad/s is applied to the system.

[20 marks]



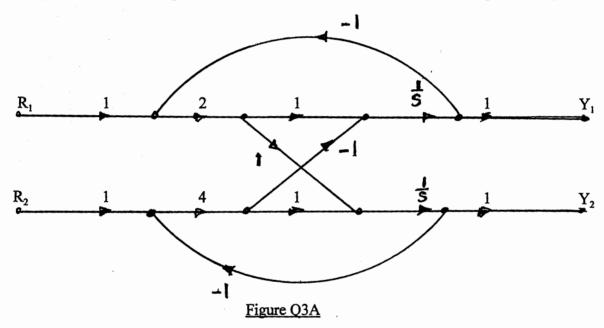
$$F(s) = \frac{10(s+10)}{(s+1)(s+100)}$$

Figure O2

(a) A two dimensional control system is shown in Figure Q3A, in which a set of state variables is defined. Obtain the state differential equations and present them in a matrix form.

[10 marks]

(b) For the magnetic disk drive system shown in Figure Q3B, determine sensitivity of this system due a small change in time τ and then the equation for the corresponding change for the closed -loop transfer function due to the change in τ . [10 marks]



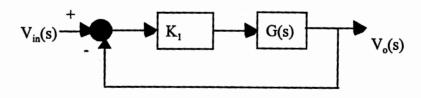


Figure Q3B

$$G(s) = \frac{10}{s(\tau s + 1)}$$

A control system for controlling pressure in a chamber has a loop transfer function

$$GH(s) = \frac{30000(2s+1)}{s(s+10)(s+20)(s^2+15s+150)}$$

Draw to scale the Bode plot (Magnitude and Phase plots) of the system. [20 marks]

For the open-loop transfer function
$$GH(s) = \frac{k}{(s^2 + 2s + 2)(s + 1)}$$
 of the system shown in Figure Q5, draw to scale the root locus. [20 marks]

