UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2008

TITLE OF PAPER: ADVANCED CONTROL SYSTEMS

COURSE CODE: EIN530

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer **question** 1 and any other three (3) questions.
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 7 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Partial Table of z- and s-Transforms

	. f(t)	F(s)	F(z)	f(kt)
and the state of t	u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$	и(kT)
	• t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
•	t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n$
•	e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$	e^{-akT}
; .	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin ωt	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	$\sin \omega kT$
7.	cos ωt	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	$\cos \omega kT$
8.	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-ikT}\sin\omega kT$
9.	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\cos\omega kT$
į 0.			<u>z</u> <u>z</u> + a	a ^κ cos kπ

z-Transform Theorems

	Theorem	Name
1.	$z\{af(t)\} = aF(z)$	Linearity theorem
2	$z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$	Linearity theorem
3.	$z\{e^{-at}f(t)\} = F(e^{aT}z)$	Complex differentiation
4.	$z\{f(t-nT)\} = z^{-n}F(z)$	Real translation
5.	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$	Complex differentiation
6.	$f(0) \doteq \lim_{z \to \infty} F(z)$	Initial value theorem
7.	$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Final value theorem

(a) State the definition of adaptive control?

[3 marks]

(b) Outline the design procedure for a state variable compensator with integrated full-state feedback and observer.

[10 marks]

(c) Outline the design procedure for a phase-lead compensation network using the root-locus method.

[12 marks]

Determine an internal model controller $G_C(s)$ for the system shown in Figure 2. It is desired that the steady-state error to a step input be zero, the settling time (with a 2% criterion) be 2 seconds. and the maximum percent overshoot be 16.3 %.

[25 marks]

Figure 2

Where the plant
$$G(s) = \frac{1}{(s+1)(s+2)}$$

A chemical reactor process whose production rate is a function of catalyst addition is shown in Figure 3. Design a compensator $G_c(s)$ by using Bode diagram method so that the system should have a steady-state error less than 0.1A for a step input, r(t) = A, and a phase margin greater than 64° .

G(s) G(s) G(s)

[25 marks]

Figure 2

where
$$G(s) = \frac{e^{-50s}}{(40s+1)^2}$$

(a) The following difference equation algorithm

$$u(k) = 11.75x(k) - 6.25x(k-1) + 0.5u(k-1); (T=I).$$

for a PID controller can be implemented using a microprocessor. We would like to 'implement this PID controller in s-domain, therefore, obtain the transfer function $G_{\mathbb{C}}(s)$ and the values of the proportional gain, reset time, and derivative time.

[16 marks]

(b) For the **deadbeat** system shown in Figure 4, design a controller D(z) so that the steady-state error to a step input is zero. [9 marks]

Figure 4

٠,٠%

The electric motor drive for a railway vehicle is shown in figure 5. The power amplifier is

nonlinear and can be approximated by $\,v_2=2e^{3v_1}\,$

Assume the normal operating point of the power amplifier is $v_{10} = 1$

(a) obtain a linear model of this system

[7 marks]

(b) determine the response when the desired velocity is 10 rad/sec and calculate the steady-state error, maximum percent overshoot and settling time.

[18 marks]

Figure 5

Where

- R(s) is the desired velocity
- Y(s) is the vehicle velocity
- G(s) is the transfer function of the armature controlled motor

$$G(s) = \frac{5}{s^2 + 1.25s + 0.75}$$

