UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC **ENGINEERING**

SUPPLEMENTARY EXAMINATION

JULY 2009

TITLE OF PAPER : ADVANCED CONTROL SYSTEMS

COURSE NUMBER: EIN 530

TIME ALLOWED : THREE HOURS

INSTRUCTIONS: ANSWER ALL FOUR QUESTIONS

EACH CARRY 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

	f(t)	F(s)	F(z)	f(kt)	
A)	u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$		u(kT)
3)	t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$		kT
C)	t ⁿ ·	$\frac{n!}{s^{n+1}}$	$\lim_{a\to 0}(-1)$	$\int_{a}^{n} \frac{d^{n}}{da^{n}} \left[\frac{z}{z - e^{-aT}} \right]$	- (kT) ⁿ
))	e ^{-at}	$\frac{1}{s+a}$		$\frac{z}{-e^{-aT}}$	e ^{-akT}
E)	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n}$	$\left[\frac{z}{z-e^{-aT}}\right]$	(kT) ⁿ e ^{-ak7}
)	sin(ωt)	$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin z^2 - 2z\cos z}{z^2 - 2z\cos z}$	$\frac{\omega T}{\cos \omega T + 1}$	sin (ω kT)
i)	cos(ωt)e ^{-akT} s	$\sin(\omega) \qquad \frac{s}{s^2 + \omega^2}$	$\frac{z}{z^2}$	$\frac{z(z-\cos\omega T)}{-2z\cos\omega T+1}$	oor(okT)
I)	e ^{-at} sin(ωt)	$\frac{\omega}{(s+a)^2+a^2}$	$\frac{ze^{-aT}}{z^2 - 2ze^{-aT}}$	$\sin \omega T = \cos \omega T + e^{-2aT}$	cos(ωkT) kT)
)	e ^{-at} cos(ωt)	$\frac{s+a}{(s+a)^2+a^2}$	$\frac{ze^{-aT}}{z^2 - 2ze^{-aT}}$	$\frac{\sin \omega T}{\cos \omega T + e^{-2\dot{a}T}}$	e ^{-akT} cos(ωkT)
0			$\frac{z}{z+a}$		$a^k \cos(k\pi)$

z-Transform Theorems					
	Name	Theorem			
1.	Linearity theorem	$z\{af(t)\} = aF(z)$			
2.	Linearity theorem	$z\{f_1(t)+f_2(t)\}=F_1(z)+F_2(z)$			
3.	Complex differentiation	$z\{e^{-at}f(t)\}=F(e^{aT}z)$			
4.	Real translation	$z\{f(t-nT)\}=z^{-n}F(z)$			
5.	Complex differentiation	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$			
6.	Initial value theorem	$f(0) = \lim_{z \to \infty} F(z)$ If the limit exists			
7.	Final value theorem $f(\infty)$	$= \lim_{z \to 1} (1 - z^{-1}) F(z)$ if the limit exists and the system			
	is stable				

- (a) State the definition of a distributed control system (DCS) and name four processes in which DCSs are used. [10 marks]
- (b) Outline the **design method** for a phase-lead compensation network using the Bode diagram.

[15 marks]

Design of state a full-state feedback law and an observer that will satisfy the following requirements:

for the full state-feedback : settling time = 1 second and $\zeta = 0.8$

for the observer

: dominant roots are at $s = -4 \pm j5$

[25 marks]

$$\dot{x} = \begin{bmatrix} -5 & -2 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

The control system shown Figure 3 must have a phase margin of 40° for the system to achieve expected performance. Design a compensator that would allow the required phase margin.

Follow the following steps to accomplish your design

A) Draw Bode diagrams for the uncompensated system.

[14 marks]

B) Read out phase margin from the Bode diagrams

[2 marks]

C) Obtain the compensator required

[9 marks]

Figure 3

- A) Define sub-harmonic oscillations which occur in non-linear systems and explain how the oscillations are generated. [5 marks]
- B) Why is it that intentional non-linearities may be introduced into a linear control system? [2 marks]
- C) For the **deadbeat** system shown in Figure 4, design a controller D(z) so that the steady-state error to a step input is zero. [18 marks]

